MTES - Exam \#2

January 14, 2022
Duration: 1 h 30

No document allowed. No mobile phone. Calculator allowed. The proposed grading scale is only indicative.

Exercise 1:Coordinate systems (≈ 4 points)

The points A, B, C are defined by their spherical, cylindrical and Cartesian coordinates, respectively:

$$
\begin{gathered}
A\left(r_{A}=2 ; \theta_{A}=\frac{\pi}{2} ; \varphi_{A}=\frac{3 \pi}{2}\right) \\
B\left(r_{B}=3 ; \theta_{B}=\frac{3 \pi}{4} ; z_{B}=0\right) \\
C\left(x_{C}=-2 ; y_{C}=-2 \sqrt{3} ; z_{C}=0\right)
\end{gathered}
$$

1. Place the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ on a scheme and define clearly their coordinates on the scheme.
2. Give the Cartesian coordinates of points A and B , and the spherical coordinates of point C (literal expression then numerical value).

Exercise 2 : Expansion of a Van der Waals gas ($\boldsymbol{\sim} \mathbf{3}$ points)

Let w and q be two differential forms defined as :

$$
w=n C d T+\frac{n^{2} a}{V^{2}} d V \text { and } q=w+P d V
$$

with P, V, T strictly positive quantities and n, C, a, b, R are strictily positive constants linked to each other by the relation : $\left(P+\frac{n^{2} a}{V^{2}}\right)(V-n b)=n R T$

1. a. Show that w is an exact form, that can be written dU on the domain $\Delta=\left\{(T, V) \in \mathbb{R}^{2} / T>\right.$ $0 ; V>n b\}$.
b. Determine the expression of the functions $U(T, V)$
2. a. Write q as a function of $\mathrm{T}, \mathrm{V}, \mathrm{dT}$ and dV .
b. Is q an exact form on Δ ?

Exercise 3 : Differential calculus (≈ 6 points)

Let consider a cylinder of radius R and height h , closed at both ends.

1. Express the total area A of the cylinder (take into account the lateral area and the areas of the discs at both ends).
2. R and h are measured with the respective uncertainties ΔR and Δh.
a. Give the expression of the absolute uncertainty ΔA on the area.
b. Numerical application: $R=(8.0 \pm 1.0) \mathrm{cm}$ and $h=15 \mathrm{~cm}$ is measured with a relative uncertainty of 10%. Write the area as $A=(\ldots \pm \cdots)$ unit.
3. A manufacturer of cans wants to obtain a maximum volume for a given area. Which relation must then verify R and h ? You can express $d h$ as a function of $d R$ by writing that the area is constant (given area), then study the sign of dV .

Exercise 4: cardioid (≈ 4 points)

A cardioid is a plane curve traced by a point on the perimeter of a circle that is rolling around a fixed circle of the same radius. It can be described using the following equations in polar coordinates:
$\left\{\begin{array}{c}r(t)=2(1-\cos t) \\ \theta(t)=t\end{array} \quad\right.$ with $t \in \mathbb{R}$

1. Give the coordinates of the vectors that are tangent to the curve for $t=0$ and $t=\frac{\pi}{2}$.
2. With M a point on the cardioid, and O the center of the Cartesian frame, express $\overrightarrow{O M}(t)$ and $\vec{v}(t)$ in the polar local frame.
3. Graph the curve for $t \in[0 ; 2 \pi[$. On the graph, place also the vectors computed in question 1 .

Exercise 5 (≈ 3 points)

In physics, the following equation is used to describe the propagation of an electric field E in a conducting material:

$$
\frac{\partial^{2} E}{\partial z^{2}}=\mu \gamma \frac{\partial E}{\partial t}
$$

To solve this equation, we use the complex expression $E=E_{0} e^{j(\omega t-k z)}$ with $j^{2}=-1, t$ is the time, z the position in the conductor, $E_{0} \neq 0$ the amplitude of the electric field for $t=0$ and $z=0, \gamma, \mu$ and ω are strictly positive real constants whereas k is a complex constant.

1. Express $\frac{\partial^{2} E}{\partial z^{2}}$ and $\frac{\partial E}{\partial t}$ in function of E_{0}, ω, t, k and z.
2. Deduce the equation verified by k.
3. Express k as $k=k^{\prime}+j k^{\prime \prime}$ with k^{\prime} and $k^{\prime \prime}$ real numbers.
