1 st MTES exam - SCAN FIRST
 November 26, 2021 (1 h)
 Correction and Grading scale

Exercise 1[3pts.]

1. $u=\sqrt{2} e^{\frac{i \pi}{4}}$ and $v=2 e^{\frac{2 i \pi}{3}}$	$0.5+0.5$
2. $\left\|\frac{u}{v}\right\|=\frac{1}{\sqrt{2}}$ and $\operatorname{Arg} \frac{u}{v}=\frac{-5 \pi}{12}$	$0.5+0.5$
3. $\frac{u}{v}=\frac{-1+\sqrt{3}}{4}-\frac{1+\sqrt{3}}{4}$	0.5
by identification, $\cos \frac{-5 \pi}{12}=\frac{-1+\sqrt{3}}{2 \sqrt{2}}$ and $\sin \frac{-5 \pi}{12}=-\frac{1+\sqrt{3}}{2 \sqrt{2}}$	$0.25+0.25$

Exercise 2[2pts.]

1. $z_{0}^{4}=\overline{z_{0}}$ and $z_{0}^{3}=\overline{z_{0}^{2}}$	$0.25+0.25$
2. Points A_{1} to A_{4} belong to the circle of center O and radius 1	
As $\left\|z_{0}\right\|=\left\|z_{0}^{2}\right\|=\left\|z_{0}^{3}\right\|=\left\|z_{0}^{4}\right\|=1$	0.5
3. figure with points A_{0} to A_{4}	0.5
Points A_{1} and A_{4} are symmetric wrt the x -axis, as well as points A_{2} and A_{3}	0.5

Exercise 3[5pts.]

1. $\Delta=3-4 i$	0.5
with $\delta=\alpha-i \beta,\left\{\begin{array}{c}\alpha^{2}-\beta^{2}=3 \\ \alpha^{2}+\beta^{2}=5 \\ 2 \alpha \beta=-4\end{array}\right.$	0.5×3
This gives $\alpha=2$ and $\beta=-1$	0.5
The solutions are $z_{1}=1-i$ and $z_{2}=3-2 i$	$0.5+0.5$
2. $z_{1}=\sqrt{2} \exp \frac{-i \pi}{4}$	$0.25+0.25$
$\left\|z_{2}\right\|=\sqrt{13}$	0.5
$\operatorname{Arg} z_{2}=\arctan \frac{-2}{3} \approx-33.7^{\circ} \approx-0.588 \mathrm{rad}$	0.5
	BONUSO.5 (justification $\left.-\frac{\pi}{2}<\operatorname{Arg}\left(z_{2}\right)<\frac{\pi}{2}\right)$

Exercise 4[3pts.]

If G is the centroid of ABCDS, by associativity, it is the barycenter of $\mathrm{I}(2), \mathrm{J}(2)$, $S(1)$ with I the barycenter of $A(1), B(1)$ and J the barycenter of $C(1), D(1)$
0.5 (associativity)

Hence G is the barycenter of $H(4), S(1)$
Therefore, $H G=\frac{1}{5} H S$
$G\left(\begin{array}{c}115.25 m \\ 115.25 m \\ 27.4 m\end{array}\right)$

Exercise 5[8pts.]

1.a Scheme with the position of all the points	$\begin{array}{r} 0.5(\mathrm{ABCDEFG})+0.5 \\ (\mathrm{KLM}) \end{array}$		
$\text { 1.b } \overrightarrow{D M} \times \overrightarrow{D L}=\left(\begin{array}{c} a \\ 0 \\ -1 \end{array}\right) \times\left(\begin{array}{c} 0 \\ a \\ -1 \end{array}\right)=\left(\begin{array}{c} a \\ a \\ a^{2} \end{array}\right)$	$\begin{array}{r} 0.5 \text { (formula) }+0.5 \\ \text { (expression) } \end{array}$		
1.c Area of DLM $=\frac{1}{2}\\|\overrightarrow{D M} \times \overrightarrow{D L}\\|=\frac{a}{2} \sqrt{2+a^{2}}$	$\begin{array}{r} 0.5 \text { (formula) }+0.5 \\ \text { (expression) } \end{array}$		
1.d $\overrightarrow{D M} \times \overrightarrow{D L} \perp(D L M)$	0.25		
$\overrightarrow{O K}=\overrightarrow{O B}+\overrightarrow{B K}=\left(\begin{array}{l} 1 \\ 1 \\ a \end{array}\right)$ $\overrightarrow{O K}$ and $\overrightarrow{D M} \times \overrightarrow{D L}$ are collinear, therefore $\overrightarrow{O K} \perp(D L M)$	0.5 0.25		
2.a $\overrightarrow{O M} \cdot \overrightarrow{O K}=(\overrightarrow{O H}+\overrightarrow{H M}) \cdot \overrightarrow{O K}=\overrightarrow{O H} \cdot \overrightarrow{O K}$	0.5		
Since $\overrightarrow{H M} \in(D L M)$ and $\overrightarrow{O K} \perp(D L M)$	0.5		
2.b $\overrightarrow{O M} \cdot \overrightarrow{O K}=a$	0.5		
so $\overrightarrow{O H} \cdot \overrightarrow{O K}=a=\lambda\\|\overrightarrow{O K}\\|^{2}=\lambda\left(2+a^{2}\right)$ i.e. $\lambda=\frac{a}{2+a^{2}}$	0.5		
$\text { 2.c } \overrightarrow{O H}=\lambda \overrightarrow{O K}=\frac{a}{2+a^{2}}\left(\begin{array}{l} 1 \\ 1 \\ a \end{array}\right)$	0.5		
2.d $\overrightarrow{H K}=\overrightarrow{O K}-\overrightarrow{O H}=\frac{2+a^{2}-a}{2+a^{2}}\left(\begin{array}{l}1 \\ 1 \\ a\end{array}\right)$	$0.5+0.5$		
Hence $H K=\\|\vec{H} K\\|=\frac{2-a+a^{2}}{\sqrt{2+a^{2}}}$	0.5		

