

1st MTES exam - SCAN FIRST November 26, 2021 (1 h) Correction and Grading scale

Exercise 1[3 pts.]

1. $u = \sqrt{2}e^{\frac{i\pi}{4}}$ and $v = 2e^{\frac{2i\pi}{3}}$	0.5+0.5
2. $ \frac{u}{v} = \frac{1}{\sqrt{2}}$ and $Arg\frac{u}{v} = \frac{-5\pi}{12}$	0.5+0.5
3. $\frac{u}{v} = \frac{-1+\sqrt{3}}{4} - \frac{1+\sqrt{3}}{4}$	0.5
by identification, $\cos \frac{-5\pi}{12} = \frac{-1+\sqrt{3}}{2\sqrt{2}}$ and $\sin \frac{-5\pi}{12} = -\frac{1+\sqrt{3}}{2\sqrt{2}}$	0.25 + 0.25

Exercise 2[2 pts.]

1. $z_0^4 = \overline{z_0} \text{ and } z_0^3 = \overline{z_0^2}$	0.25 + 0.25
2. Points A_1 to A_4 belong to the circle of center O and radius 1	0.5
As $ z_0 = z_0^2 = z_0^3 = z_0^4 = 1$	0.5
3. figure with points A_0 to A_4	0.5
Points A_1 and A_4 are symmetric wrt the x-axis, as well as points A_2 and A_3	graded on the scheme

Exercise 3[5 pts.]

1. $\Delta = 3 - 4i$	0.5
with $\delta = \alpha - i\beta$, $\begin{cases} \alpha^2 - \beta^2 = 3\\ \alpha^2 + \beta^2 = 5\\ 2\alpha\beta = -4 \end{cases}$	0.5 imes 3
This gives $\alpha = 2$ and $\beta = -1$	0.5
The solutions are $z_1 = 1 - i$ and $z_2 = 3 - 2i$	0.5 + 0.5
2. $z_1 = \sqrt{2} \exp \frac{-i\pi}{4}$	0.25+0.25
$ z_2 = \sqrt{13}$	0.5
$Argz_2 = \arctan \frac{-2}{3} \approx -33.7^\circ \approx -0.588 \text{ rad}$	0.5
	BONUS0.5 (justification
	$-\frac{\pi}{2} < Arg(z_2) < \frac{\pi}{2})$

Exercise 4[3 pts.]

If G is the centroid of ABCDS, by associativity, it is the barycenter of I(2), J(2), S(1) with I the barycenter of A(1), B(1) and J the barycenter of C(1), D(1)	0.5 (associativity)
Hence G is the barycenter of H(4), S(1)	0.5
Therefore, $HG = \frac{1}{5}HS$	0.5
$G_{(115.25m)}^{(115.25m)}$	0.5×3
(27.4m)	

Exercise 5[8 pts.]

1.a Scheme with the position of all the points	0.5 (ABCDEFG) +0.5 (KLM)
1.b $\vec{DM} \times \vec{DL} = \begin{pmatrix} a \\ 0 \\ -1 \end{pmatrix} \times \begin{pmatrix} 0 \\ a \\ -1 \end{pmatrix} = \begin{pmatrix} a \\ a \\ a^2 \end{pmatrix}$	0.5 (formula) +0.5 (expression)
1.c Area of DLM = $\frac{1}{2} \vec{DM} \times \vec{DL} = \frac{a}{2}\sqrt{2 + a^2}$	0.5 (formula) +0.5 (expression)
1.d $\vec{DM} \times \vec{DL} \perp (DLM)$	0.25
$\vec{OK} = \vec{OB} + \vec{BK} = \begin{pmatrix} 1\\1\\a \end{pmatrix}$	0.5
\vec{OK} and $\vec{DM} \times \vec{DL}$ are collinear, therefore $\vec{OK} \perp (DLM)$	0.25
2.a $\vec{OM} \cdot \vec{OK} = (\vec{OH} + \vec{HM}) \cdot \vec{OK} = \vec{OH} \cdot \vec{OK}$	0.5
Since $\vec{HM} \in (DLM)$ and $\vec{OK} \perp (DLM)$	0.5
2.b $\vec{OM} \cdot \vec{OK} = a$	0.5
so $\vec{OH} \cdot \vec{OK} = a = \lambda \vec{OK} ^2 = \lambda(2 + a^2)$ i.e. $\lambda = \frac{a}{2 + a^2}$	0.5
2.c $\vec{OH} = \lambda \vec{OK} = \frac{a}{2+a^2} \begin{pmatrix} 1\\1\\a \end{pmatrix}$	0.5
2.d $\vec{HK} = \vec{OK} - \vec{OH} = \frac{2+a^2-a}{2+a^2} \begin{pmatrix} 1\\1\\a \end{pmatrix}$	0.5+0.5
Hence $HK = \vec{HK} = \frac{2-a+a^2}{\sqrt{2+a^2}}$	0.5