Solutions and Grading Scheme for IE1S2 SCAN First 2021-2022 - 06/05/2022

Instructions: items in **black** are graded, items in **gray** are for information only

EX1	4,5 pts
1.1 $I \Rightarrow C$ since the derivative of $y = \sqrt{ax}$ at 0 tends to infinity \Rightarrow vertical tangent at O $J \Rightarrow A$ since the derivative of $y = \frac{x^2}{a}$ at 0 tends to $0 \Rightarrow$ horizontal tangent at O $K \Rightarrow B$ trivial since it is the line $y = x$	Total: 0,5 pt or 0
1.2 $I' = \int_{y=0}^{a} \int_{x=0}^{\frac{y^2}{a}} dx dy \qquad \qquad J' = \int_{y=0}^{a} \int_{x=0}^{\sqrt{ax}} dx dy \qquad \qquad K' = \int_{y=0}^{a} \int_{x=0}^{y} dx dy$	Total: 1,5pt 0,5 : 0,5 : 0,5
1.3 $I = \int_{0}^{a} (a - \sqrt{ax}) dx = \left[ax - \frac{2}{3a} (ax)^{\frac{3}{2}} \right]_{0}^{a} = \frac{a^{2}}{3} \text{ or as normal in y:}$ $I' = \int_{x=0}^{a} \frac{y^{2}}{a} dy = \frac{1}{3} [y^{3}]_{0}^{a} = \frac{a^{3}}{3}$ $J = \int_{x=0}^{a} \left(a - \frac{x^{2}}{a} \right) dx = \left[ax - \frac{x^{3}}{3a} \right]_{0}^{a} = \frac{2a^{2}}{3} \text{ or as normal in y:}$ $J' = \int_{y=0}^{a} \sqrt{ay} dy = \left[\frac{2}{3a} (ay)^{\frac{3}{2}} \right]_{0}^{a} = \frac{2a^{2}}{3}$ $K = \int_{x=0}^{a} (a - x) dx = \left[ax - \frac{x^{2}}{2} \right]_{0}^{a} = \frac{a^{2}}{2} \text{ or as normal in y:}$ $K' = \int_{y=0}^{a} y dy = \frac{a^{2}}{2}$	Total: 2,5pt

EX2	6pts+1bonus
2.1	Total: 1pt
Mass of the cylinder: $m_c = \rho \pi R^2 H \sim 3.1 \text{g} (\pi \text{ g tolerated})$	0,5
Mass of the cone: $m_{\Delta} = \rho \frac{\pi R'^2 H'}{3} \sim 50 \text{g} (16\pi \text{ g tolerated})$	0,5
	(0,25 instead of 0,5 if no units)
2.2	Total: 1pt
Oz is the axis of revolution of the cylinder (ρ does not depend on θ), so G_C is on Oz and the	0,5+0,5
perpendicular plane cutting the cylinder in two halves is a symmetry plane (ρ does not depend on the height) so G_C is ai the middle of the cylinder: $G_C(0,0,H' + H/2)$	(0 if not justified)
2.3	Total: 3pt + 0,5 bonus
Oz is the axis of revolution of the cone, so G_{Δ} is on Oz : $G_{\Delta}(0,0,z_{\Delta})$	-not counted if already
In cylindrical coordinates: $r_{\Delta} = 0$, $\theta_{\Delta} = 0$ leaving us with only z_{Δ} to be determined.	counted in the previous question (0,5 if point not given above)
We have $dM = \rho dV = \rho r dr d\theta dz$	0,5
The variables r and z are connected through the expression: $\frac{R'}{H'} = \frac{r}{z}$, hence we can express, for example, r as a function of z	
$M_{\Delta}z_{\Delta} = \int_{z=0}^{H'} \int_{r=0}^{\frac{R'}{H'^z}} \int_{\theta=0}^{2\pi} z \cdot \rho r dr d\theta dz$	
	1 (pose the integral)
$= 2\pi\rho \int_{z=0}^{H'} \int_{r=0}^{\frac{R'}{H'^{z}}} z \cdot r dr dz = \pi\rho \int_{z=0}^{H'} [r^{2}]_{r=0}^{\frac{R'}{H'^{z}}} z dz$	
$= \pi \rho \frac{{R'}^2}{{H'}^2} \int_{z=0}^{H'} z^3 dz = \pi \rho \frac{{R'}^2}{4{H'}^2} {H'}^4 = \pi \rho \frac{{R'}^2 {H'}^2}{4}$	1 (resolution)
With the mass of the cone found in 2.1 we have: $z_{\Delta} = \frac{3}{4}H' \sim 2.2$ cm	0,5 (solution)
Bonus: $H' > z_{\Delta} > H'/2$ which makes sense !	Bonus 0,5 for the comment (in literal or numerical)

2.4	Total: 1pt + 0,5 bonus
For the overall center of gravity we will use the formula of the barycenter: $(M_{\Delta} + M_{C})OG = M_{C}OG_{C} + M_{\Delta}OG_{\Delta}$	0,25
from where we take the <i>z</i> -coordinate:	
$(M_{\Delta} + M_{C})z_{G} = M_{C}z_{C} + M_{\Delta}z_{\Delta} \Longrightarrow z_{G} = \frac{M_{C}z_{C} + M_{\Delta}z_{\Delta}}{M_{\Delta} + M_{C}}$	0,5
N.A. $z_G = \frac{79}{34} cm \sim 2.3 cm$	
	0,5 (no units no points
Bonus : Mc $<< M_{\Delta}$ so $z_G \sim z_{\Delta}$ (or if the previous bonus was not given: any comment on the fact that the value 2,3cm "looks nice" or "makes sense")	Bonus 0,5

EX3	5,5 pts +0,5_bonus
3.1	Total: 2 pt + 0,5 bonus
Mass: $M = \iiint_V dM = \iiint_V \rho dV = \iiint_V k \frac{a^2 + r^2}{4a + z} r d\theta dr dz$ The bounds of the integral are independent and the function to integrate can be expressed as a product of type $f(r) \cdot g(\theta) \cdot h(z)$ hence we can apply Fubini, writing it as a product of integrals:	0,5 (expression)
$M = k \int_{0}^{2\pi} d\theta \cdot \int_{0}^{a} r(a^{2} + r^{2}) dr \cdot \int_{-2a}^{2a} \frac{1}{4a + z} dz$ $M = k \cdot 2\pi \cdot \left[\frac{a^{2}}{2}r^{2} + \frac{1}{4}r^{4}\right]_{0}^{a} \cdot \left[ln(4a + z)\right]_{-2a}^{2a}$	0,5 (for posing correctly the integral with the right bounds)
$M = 2\pi k \left(\frac{a^4}{2} + \frac{a^4}{4}\right) ln(3)$	
$M = \pi k \frac{3a^4}{2} ln(3)$	1 (calculation and result)
Bonus : dimensions are correct (no dimension in the ln and $[k]=ML^{-4}$)	Bonus 0,5
3.2	Total: 1pt
Parametrization of the cylinder in Cartesian coordinates:	
$C = \{M(x, y, z) \in \mathbb{R}^3 (x^2 + y^2) \le a^2 \text{ and } - 2a \le z \le 2a\} \text{ (or any equivalent form)}$	1
3.3	Total: 1pt
sketch Distance between the point $M(x, y, z)$ and the axis Oy : $r_{Oy} = \sqrt{z^2 + x^2}$	0,5 0,5

3.4
Moment w.r.t.
$$0y$$
:
 $J = \iiint_V r_{0y}^2 dM = \iiint_V r_{0y}^2 \rho dV = \iiint_V (x^2 + z^2) k \frac{a^2 + (x^2 + z^2)}{4a + z} dx dy dz$ Total: 1,5pt $J = \iiint_V r_{0y}^2 dM = \iiint_V r_{0y}^2 \rho dV = \iiint_V (x^2 + z^2) k \frac{a^2 + (x^2 + z^2)}{4a + z} dx dy dz$ 0,5 (for the moment of
inertia correctly posed
with r_oy and rhodV) $J = k \int_{z=-2a}^{2a} \int_{y=-1}^{1} \int_{x=-\sqrt{1-y^2}}^{\sqrt{1-y^2}} (x^2 + z^2) \frac{a^2 + (x^2 + z^2)}{4a + z} dx dy dz$ 1 (complete integral
with bounds)

Exercise 4	4 pts+0,5 bonus
4.1	Total: 1 pt
$\vec{0} = \frac{M_S}{M_S + M}\vec{Ob} + \frac{M}{M_S + M}\vec{Oa} \Longrightarrow 0 = -\frac{M_S}{M_S + M}b + \frac{M}{M_S + M}a \text{ or any equivalent equation}$	0,50
It follows that: $M_S = M \frac{a}{b}$	0,50
4.2	Total: 2,5pt
The height of the liquid in the tank has cylindrical symmetry , hence, we should use cylindrical coordinates $V_S = \iiint_{(S)} dV$, with the parametrisation of the sphere as such:	0,25 (0 if other conclusion, even if the integral and the result is correct in the end)
$\theta \in [0,2\pi],$ $z \in [-R, h - R]$ (with the reference at the center of the sphere, for a much simpler calculation), $r \in [0, \sqrt{R^2 - z^2}]$, and $dV = r d\theta dr dz$	4 * 0,25 (For this or any similar <u>good parametrization</u> , and dV)
Hence: $V_{S} = \int_{\theta=0}^{2\pi} \int_{z=-R}^{h-R} \int_{r=0}^{\sqrt{R^{2}-z^{2}}} r dr dz d\theta, \text{ which after resolution should give:}$ $V_{S} = \pi \left(h^{2}R - \frac{h^{3}}{3} + \frac{2}{3}R^{3} \right)$	1,25
4.3 $M_S = \rho V_S = \rho \pi \left(R^2 h - \frac{h^3}{3} + \frac{2}{3} R^3 \right)$	Total: 0,5 pt + 0,5 bonus
$\frac{M_S - pV_S - pR\left(\frac{R}{3} + \frac{1}{3} + \frac{1}{3}R\right)}{\text{Then, from the result in 4.1 it follows that:}}$	0,25
$\frac{\rho \pi b}{M} \left(R^2 h - \frac{h^3}{3} + \frac{2}{3} R^3 \right) = a$ NB: this is the equation the engineer should program in its computer that controls the pump	0,25
Bonus: check dimensions either in Q4.2 or Q4.3	Bonus 0,5