

SCAN

Section Sciences et Anglais

PHYSICS – MECHANICS SCAN 61-62

Exercise 1 – Statics

The uniform slender bar of length 3r and mass m rests against the circular wall as shown in Figure 1. Static equilibrium is assumed and friction is neglected.

- 1 Introduce all the relevant coordinate systems and parameters.
- 2 Determine the contact force at point C in terms of m, g and geometrical parameters
- 3 Determine the reaction force at the pivot at point O in terms of m, g and geometrical parameters.

Figure 1.

Exercise 2 – Miscellaneous topics...:

Consider the man of mass m in a cart of mass M on an incline as shown in Figure 2. In what follows, all friction and the mass of the rope and pulleys are neglected.

- 1 Assuming static equilibrium, what is the pull Ps exerted by the man on the rope? Explain the interest of the pulley system in reducing the force needed for equilibrium.
- 2 The man now exerts a pull Pd (larger than Ps), determine the acceleration of the cart and deduce the time needed to climb a distance D from the position of static equilibrium along the incline.

3 – Determine the work generated by all the external forces on the system cart + man when it moves a distance D from the position of static equilibrium along the incline.

Figure 2.

Exercise 3 – Energy – Work:

The crawler-wrecking crane in Figure 3 is moving at constant speed v when it is suddenly brought to a stop. The objective of this exercise is to determine the maximum angle θ_{MAX} through which the wrecking ball swings.

- 1 What is the value of angle θ when the system moves at constant speed? Precise justifications are required.
- 2 Isolate the ball (mass m) and determine the work of the external forces between $\theta = 0$ and a position defined by angle θ as shown in the figure.
 - 3 Apply the Kinetic Energy Theorem to the isolated ball.
 - 4 Deduce the maximum angle of oscillation θ_{MAX} reached after the sudden stop.

Figure 3.