

Correction & Marks – Exam 2 (/36)

General comments for all exercises :

- up to 1 point bonus/penalty for spelling, cleanness and clarity.
- As indicated in the header of the exam, no points for any numerical result given without unit.
- For all **non homogeneous result without any comment**, penalty of -0.5.
- The exam is noted on **36 points + 5.5 points bonus**. The final mark is obtained by **dividing the mark by 1.8**.

Exercise 1 : Plot of an I-V Characteristics (11.5 points + 0.5 pts bonus)

Remark : the point for U<0 could not be obtained with this circuit only.

Elements of correction	Points	/11.5
1 . The I-V curve does not go through $(0,0)$: active dipole (points for justification)	0.5	
Question 2		/ 5
- Drawing of extreme lines (D_1) et (D_2) :	0.5+0.5	
- Bonus : drawing quality : D_1 and D_2 go through all (or almost all) uncertainty boxes		+0.5
- Choice of points for determining the lines' equations : the two points chosen	0.5	
on (D_1) and (D_2) must be specified with their coordinates (and units)		
- Determination of a_{min} , b_{max} from the equation of (D_1)	0.5	
Points A ₁ (2 V ;4.2 mA) and B ₁ (0.42 V ; 18 mA) belong to (D_1) .		
$\Rightarrow a_{min} = \frac{18 - 4.2}{0.42 - 2} = -8.73 \text{ mA.V}^{-1}$		
From the coordinates of point $B_1: b_{max} = 18 + 8.73 \times 0.42 = 21.7 \text{ mA}$		
- Determination of a_{max} , b_{min} from the equation of (D_2)	0.5	
Points A ₂ (2 V ;7.4 mA) and B ₂ (0.22 V ; 18 mA) belong to (D_2) .		
$\Rightarrow a_{max} = \frac{18-7.4}{0.22-2} = -5.96 \text{ mA.V}^{-1}$		
From B ₂ : $b_{min} = 18 + 5.96 \times 0.22 = 19.3$ mA		
- Determination of parameters a and b :		
2 possible methods :		
- Either : drawing of line (D) of equation $I = aU + b$		
Points A(2 V; 5.8 mA) and B(0.34 V; 18 mA) belong to (D) .		
$\Rightarrow a = \frac{18-5.8}{0.34-2} = -7.4 \text{ mA.V}^{-1}$	0.5	
Then from B : $b = 18 + 7.35 \times 0.34 = 20.5$ mA	0.5	
- Or : from a_{min} , a_{max} , b_{min} , b_{max} :	(or	
$a = \frac{a_{max} + a_{min}}{2}$	0.5	
$b = \frac{b_{max} + b_{min}}{2}$	0.5)	
- Uncertainties on a and b :	,	
$\Delta a = \frac{a_{max} - a_{min}}{2} = \frac{-5.96 + 8.73}{2} = 1.4 \text{ mA.V}^{-1}$	0.5	
$\Delta b = \frac{b_{max} - b_{min}}{2} = \frac{21.7 - 19.3}{2} = 1.2 \text{ mA}$	0.5	
- Presentation of the results : $(a = -7.4 \pm 1.4)$ mA.V ⁻¹ and $b = (20.5 \pm 1.2)$ mA	0.5	
No points if no unit		

3. Equivalent circuit scheme		/ 3.5
Scheme of a real voltage source of emf E internal resistance r :	0.5	
- Define U and I along the same orientation as E on the scheme (active sign convention)	0.5	
- Justification for values of <i>r</i> and <i>E</i> :	0.5	
either using $U = E - rI$, $I = -\frac{1}{r}U + \frac{E}{r}$, hence $a = -\frac{1}{r}$ and $b = \frac{E}{r}$		
$\underline{\text{or}} a = -\frac{1}{r} \text{ et } E = U(I = 0)$		
$\Rightarrow r = -\frac{1}{a} = 135\Omega$ and $E = br = 2.8$ V	0.5	
- Uncertainties on r and E :		
$r_{min} = -\frac{1}{a_{min}} = \frac{1}{8.73 \times 10^{-3}} = 114\Omega, r_{max} = -\frac{1}{a_{max}} = \frac{1}{5.96 \times 10^{-3}} = 168\Omega, \Delta r = \frac{r_{max} - r_{min}}{2} = 27\Omega$	0.5	
$E_{min} = b_{min}r_{min} = 2.2 \text{ V}, E_{max} = b_{max}r_{max} = 3.7 \text{ V}, \Delta E = 0.8 \text{ V}$	0.5	
- Presentation of the results : $r = (135 \pm 27)\Omega$ and $E = (2.8 \pm 0.8)$ V (no unit : no points)	0.5	
4. Active sign convention since U and I have the same orientation	0.5	
5. Always supplying energy ?		/ 2
Passive role for $U < 0$ and active for $U > 0$	0.5	
Justification : in active sign convention, $P = UI$ is the power supplied by the dipole.	0.5	
$P = UI < 0 \rightarrow \text{passive role}, P = UI > 0 \rightarrow \text{active role}$	0.5+0.5	

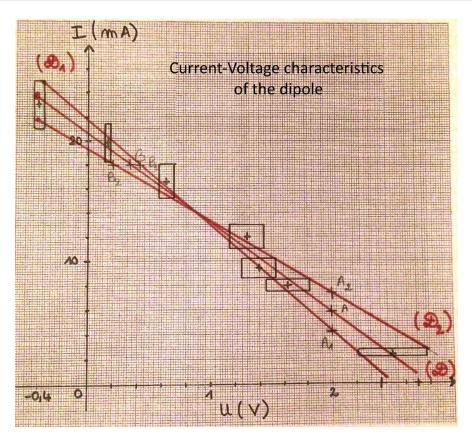


FIGURE 1 – I-V curve of the dipole

Exercise 2 : Galileo's telescope (15 points + 3 pts bonus)

Elements of correction	Points	/15
1. Optical scheme of Galileo's telescope		8.5
1.1 Afocal system : the image of an object at infinity through the system should be at		
infinity \Rightarrow F'_1 and F_2 are on the same location	2	
(1 point for the explanation, 1 point for $F'_1 = F_2$)		
1.2. Determination of d :		/4
$d = \overline{O_1 O_2} = \overline{O_1 F_1'} + \overline{F_1' O_2} = \overline{O_1 F_1'} + \overline{F_2 O_2} = f_1' + f_2'$	1	
Uncertainty on d :		
$f'_1 = (20, 0 \pm 0, 4)cm$ and $f'_2 = (-4, 00 \pm 0, 08)cm$	0.5	
$d_{max} = f'_{1max} + f'_{2max} = 16.5 \text{ cm}$	0.5	
$d_{min} = f'_{1min} + f'_{2min}$ =15.5cm	0.5	
Calculation of $\Delta d : \Delta d = \frac{d_{max} - d_{min}}{2}$	0.5	
Numerical application : $d=(20, 0-4, 0=16, 0)$ cm or $d = \frac{d_{max} + d_{min}}{2} = 16, 0cm$	0.5	
$d = (16, 0 \pm 0.5)cm$ (correct rounding, 0 if no unit)	0.5	
1.3. Scheme of Galileo's telescope (on doc 2) :		/2.5
Correct positioning of L_2	0.5	
Drawing of the ray going through L_1 (obvious) then L_2	1	
Determination of the intermediate image	1	
Bonus : Drawing accuracy, correct use of full/dotted lines		+0.5
1.4. Bonus : Advantages of Galileo's telescope		+2
The image through the telescope is upright	+0.5	
Justification of upright image	+0.5	
Advantage 1 : the image is not reversed	+0.5	
Advantage 2 : the telescope is more compact (<i>d</i> smaller)	+0.5	
2. Angular magnification of Galileo's telescope		/3
$2.1 \tan\theta = \frac{\overline{A_1 B_1}}{\overline{O_1 F_1'}} = \frac{\overline{A_1 B_1}}{\overline{f_1'}}$	0.5	
$tan\theta' = \frac{\overline{A_1B_1}}{\overline{O_2F_2}} = -\frac{\overline{A_1B_1}}{f_2'}$	0.5	
We are in Gauss conditions so $tan\theta \approx \theta$ and $tan\theta' \approx \theta'$	0.5	
We have therefore : $G = \frac{\sigma}{\theta} \approx -\frac{s_1}{f_2'}$		
We have therefore : $G = \frac{\theta'}{\theta} \approx -\frac{f_1'}{f_2'}$ 2.2 Calculation of $G : G_{max} = \frac{f_{1max}'}{f_{2min}'} = \frac{20,4}{3,92} = 5,20$	0.5	
$G_{min} = \frac{19.6}{4.08} = 4,80$	0.5	
Presentation of the final result : $G = 5,0 \pm 0,2$	0.5	
3. Open question		/3.5
-Scheme of the apparent diameter of Copernicus with the naked eye showing clearly	1	
the different parameters : d_{cop} : Copernicus diameter, D_{EM} and angle θ_{cop}		
$- tan \theta_{cop} \approx \theta_{cop} \approx \frac{d_{cop}}{D_{FM}}$ because in Gauss conditions	0.5	
- Without telescope : $\theta_{cop} \approx \frac{96}{384000} \approx 2.5 \times 10^{-4}$ rad smaller than the eye angular	0.5	
resolution \Rightarrow Copernicus is invisible with the naked eye	0.5	
- With the telescope : $\theta'_{cop} = G\theta_{cop} = 1.25 \times 10^{-3}$ rad : Copernicus is visible	0.5	
- For Clavius : $\theta_{cla} \approx 6.25 \times 10^{-4}$ rad : Clavius is visible with the naked eye	0.5	
(therefore with the telescope).		
- Bonus : Communication and clarity of the reasoning		+0.5

Elements of correction	Points	/9.5
1. Construction on document 3 :		/2.5
- Case a : construction of A_1B_1 with prolongation in dotted line	0.5	
- Case a : correct position of A_2B_2 (accept the symmetry w.r.t. the mirror plane)	0.5	
Bonus : if drawing of rays to get A_2B_2 (case a)		+0.5
Bonus : construction of $A'B'$ (case a)		+0.5
- Case b : drawing of A_1B_1 then A_2B_2 and finally $A'B'$ with at least two rays	1.5	
If correct rays until $A'B'$ but without finding A_1B_1 and A_2B_2 : 1 pt/1.5		
2. Position and size of A_1B_1 , A_2B_2 and $A'B'$ by calculation :		/4
2.1 For A_1B_1 : $\frac{1}{\overline{OA_1}} - \frac{1}{\overline{OA}} = \frac{1}{f'}$ hence $\overline{OA_1} = \frac{f'\overline{OA}}{f' + \overline{OA}}$	0.5	
$\overline{OA_1} = 6 \text{ cm}$ $f' + OA$	0.5	
Calculation of $\overline{A_1B_1}$: $\gamma = \frac{A_1B_1}{\overline{AB}} = \frac{OA_1}{\overline{OA}}$.	0.5	
We find $\overline{A_1B_1} = -2$ cm	0.5	
Since the question mentioned the length, points for answer : $A_1B_1 = 2cm$		
2.2 For A_2B_2 :		
Noting <i>M</i> the intersection between the mirror plane and the optical axis, $\overline{MA_1} = -\overline{MA_2}$	0.5	
$\overline{MA_1} = \overline{MO} + \overline{OA_1} = -2 + 6 = 4cm$ so $\overline{MA_2} = -4cm$	0.5	
As a result : $\overline{OA_2} = \overline{OM} + \overline{MA_2} = 2 - 4 = -2cm$.	0.5	
Calculation of $\overline{A_2B_2}$: the mirror magnification is $1: \gamma = \frac{\overline{A_2B_2}}{\overline{A_1B_1}} = 1$		
therefore $\overline{A_1B_1} = \overline{A_2B_2} = -2cm$	0.5	
Since the question mentioned the length, points for answer : $A_2B_2 = 2cm$		
2.2 Bonus : For <i>A'B'</i>		
Warning : the direction of propagation of light changed and is now from right to left (rl)		
thus : $\overline{OA_{2rl}} = -\overline{OA_2}$		
$\frac{1}{OA'_{rl}} - \frac{1}{OA_{2rl}} = \frac{1}{f'}$		+0.5
We find : $\overline{OA'} = -\overline{OA'_{rl}} = -1cm$		
$\gamma = \frac{\overline{A'B'}}{\overline{A_2B_2}} = \frac{\overline{OA'}}{\overline{OA_2}}$. We get $\overline{A'B'} = -1$ cm		+0.5
The question mentioned the length, points for answer : $A'B' = 1cm$		
The question mentioned the length, points for answer $MD = 10m$		
3.	0.5	/1
Moving M in case b) does not change the position of the final image $A' = F$.	0.5	
If $A = F$ then A_1 and A_2 are located at infinity on the optical axis, therefore A' is located	0.5	
on F'_{rl} (light propagation from right to left) and so $A = F = F'_{rl}$.		
4.		/ 2
- The method is called autocollimation .	0.5	
- The experimental setup is that of doc. 3 : object, lens, mirror aligned	0.5	
(point for correct scheme or doc 3 correctly referred to)		
- We vary the object/lens distance by moving the lens	0.5	
When the final image is formed on the object plane and is of the same size as the object	_	
but reversed, we are in case b		
- We then measure $\overline{OA} = -f'$	0.5	
- We then measure $IIA = -t'$		

Exercise 3 : Autocollimation (9.5 points + 2 pts bonus)

Document 2 :

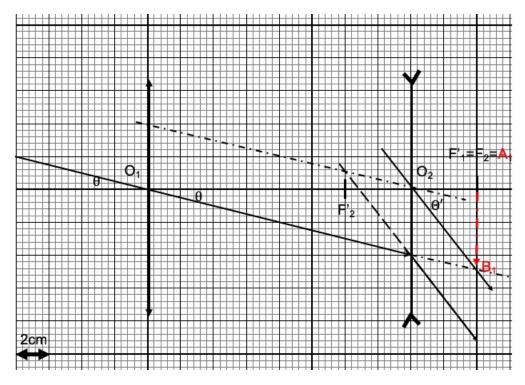
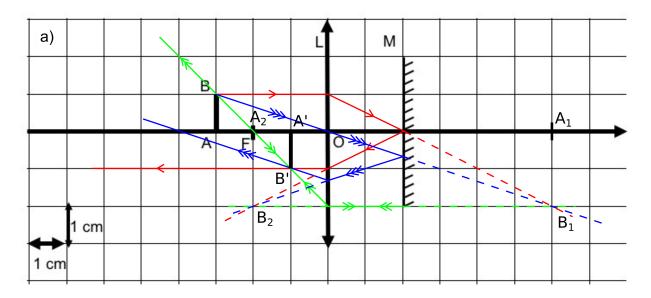
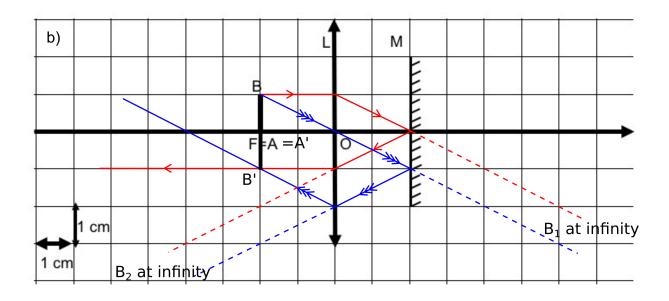




FIGURE 2 – Correction of 1.3 of exercise 2 : B_1 is the intermediate image of an object B at infinity

Document 3 :

