

Exam 3 - Physics December, 21st 2018, duration : 1h30

Exercise 1 : Straigthforward application of lectures and practicals (5.5 points)

1.a	Taking half a graduation for left and right uncertainties (0.025 ms) we read : $T = 1.00 \pm 0.05$ ms	0.5
	<i>Bonus</i> :2 $T = 2.00 \pm 0.05$ ms so $T = 1.00 \pm 0.03$ ms	+0.25
	Time shift : $\tau = 0.25 \pm 0.05$ ms	0.5
1.b	$u_R=2.8\pm0.1$ V and $u_Z=4.1\pm0.1$ V (no score if confusion between peak and peak-to-peak amplitude)	0.5
	Bonus : if peak-to-peak amplitude is computed to reduce uncertainties	+0.25
2.	$u_R(t)$ and therefore $i(t)$ is ahead of $u_Z(t)$	0.5
3.	$\varphi = 2\pi \frac{\tau}{T}$ (or $\varphi = 360 \frac{\tau}{T}$ in degree)	0.5
4.	$\varphi \simeq \frac{\pi}{2} \simeq 1.57 \text{ rad (or } 90^\circ)$	0.5
	Using the min/max method, we have $\varphi = 1.57 \pm 0.40$ rad or $\varphi = 90 \pm 23^{\circ}$	0.5
5.	Using the modulus of $\underline{u}_{\underline{Z}}$, $\underline{u}_{\underline{R}}$, \underline{Z} and $\underline{i}(\underline{t})$: $U_z = ZI$ and $I = \frac{U_R}{R}$ so that : $Z = R \frac{U_Z}{U_R}$	0.5
6.	$Z = 10^4 \times \frac{4.1}{2.8} = 14643\Omega$	0.5
7.	Given $i(t)$ is ahead of $u_Z(t)$ with a phase shift of $\pi/2$, the unknow dipole is a capacitor	1.0

Exercise 2 : Nonlinear characteristic and operating point (5 points)

FIGURE 1 - Using successive source transformation

FIGURE 2 - Using Thevenin's theorem

2.aThe orientation of I being provided, Kirchhoff circuit's law writes : $E - (R + R_L)I = V_D$ 0.5It is supposed that E > 0. We can use logic and absurdity to demonstrate that $V_D > 0$.
Assuming that $V_D < 0$ then $I \le 0$ given the IV characteristics of the diode. Given the previous
expression of V_D we have $V_D > 0$ which is absurd. The only possibility is $V_D > 0$ and I > 00.52.bGiven $E - (R + R_L)I = V_D$ we have another expression of I as function of V_D :
 $E - V_D$ $E - V_D$

$$I = \frac{E - V_D}{R + R_L} \tag{1.0}$$

This provide the equation of a straight line crossing the horizontal axis at $V_D = E = 1.5$ V and the
vertical axis at $I = \frac{E}{R+R_L} = 0.05$ A0.5We can then determine graphically the operating point of the circuit : $V = 0.67 \pm 0.02$ V and
 $I = 27 \pm 2$ mA1.0Bonus : uncertainites+0.5

Exercise 3 : Circuit in transient regime (9.5 points)

Notice : signs of the following expression have to be adapted according to the choice of positive orientation. 1:

1.	In steady state regime : $u_{DB} = L \frac{d \iota_{DB}}{d t} = 0$ V, so that $u_{CB} = 0$ V	0.5
	$u_{AC} = u_{AD} = E = 24 \text{ V}$	0.5
	$i_{AC} = u_{AC}/R_1 = 2$ A and $i_{AD} = u_{AD}/R_3 = 3$ A	0.5
	$i_{CB} = u_{CB}/R_2 = 0$ A	0.5
	$i_{CD} = i_{AC} - i_{CB} = 2$ A and $i_{DB} = i_{CD} + i_{AD} = 5$ A	0.5
	Total current supplied by $E: i_{BA} = i_{AC} + i_{AD} = 5$ A	0.5
2.	Illustration of a possible solution :	
	Once <i>K</i> is open we have $u_{DB} = L \frac{di_{DB}}{dt}$	0.5
	In branch ADB : $L\frac{di_{DB}}{dt} + R_3 i_{DB} = E$	1.0
	Computing the time derivative of the previous equation gives : $L\frac{d^2i_{DB}}{dt^2} + R_3\frac{di_{DB}}{dt} = 0$ (1)	1.0
	$u_{CB} = \frac{R_2}{R_1 + R_2} E$ (voltage divider or Kirchhoff circuit's law)	0.5
	And: $u_{CD} = u_{CB} - u_{DB} = \frac{R_2}{R_1 + R_2} E - L \frac{di_{DB}}{dt}$ (2)	0.5
	We deduce : $\frac{di_{DB}}{dt} = \frac{R_2}{(D+D)^2} E - \frac{1}{2} u_{CD}$ (3) and $\frac{d^2 i_{DB}}{dt^2} = -\frac{1}{2} \frac{du_{CD}}{dt}$ (4)	
	Combining (1), (3) and (4) we get : $\frac{du_{CD}}{dt} + \frac{R_3}{L}u_{CD} = \frac{R_2R_3}{(R_1+R_2)L}E$	0.5
3.	From the previous differential equation :	
	$\lim_{t \to +\infty} u_{CD}(t) = \frac{R_2}{R_1 + R_2} E = 8 \operatorname{V} \left(\operatorname{or} \lim_{t \to +\infty} u_{DB}(t) = 0 \operatorname{V} \text{ so that } u_{CD} = u_{CB} \right)$	0.5
4.	Using $\tau = L/R_3$, solution : $u_{CD} = A \exp(-t/\tau) + \frac{R_2}{R_1 + R_2}E$	1.0
	<i>Warning</i> !: At $t = 0^+ u_{CD}(0^+) \neq 0$ V but $u_{CD}(0^+) = 24$ V	
	Indeed, u_{AC} abruptly changes from $E = 24$ V to $u_{AC}(0^+) = \frac{R_1}{R_1 + R_2} E = 16$ V	
	The current flowing through the coil is always continuous. At $t = 0^-$ this current is equal to	
	$\frac{E}{R_1} + \frac{E}{R_3}$. At $t = 0+$ this current flows through resistor R_3 so that $u_{AD}(0^+) = \frac{R_1 + R_3}{R_1}E = 40$ V. Given	+0.5
	$u_{CD} = u_{AD} - u_{AC} \text{ we have } : u_{CD}(0^+) = \left(\frac{R_1 + R_3}{R_1} - \frac{R_1}{R_1 + R_2}\right) E = \left(\frac{R_1 R_3 + R_1 R_2 + R_2 R_3}{R_1 (R_1 + R_2)}\right) E = 24 \text{ V}$	
	Given this result we find $A = \frac{K_3}{R_1}E = 16 \text{ V}$	0.5
	The plot shall exhibit an exponential decay from 24 V at $t = 0$ to 8 V .	0.5

The plot shall exhibit an exponential decay from 24 V at t = 0 to 8 V.

