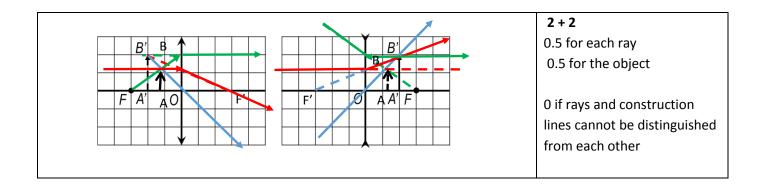

1 – Prisms placed side by side (6 points)

1. N sinα= n sin β	0.5
$2. \ \beta = \frac{\pi}{2} - \gamma$	0.5
2.	
At I ₂ : The critical angle is such that n.sin(i _c)= 1 , i.e. $\sin i_c = \frac{1}{n}$	1
Therefore we have $\sin \gamma > \frac{1}{n}$	1
	0.5
At I_1 : N sin α = n sin β = n sin $(\frac{\pi}{2} - \gamma)$ = n cos γ	
As a consequence, $N \sin \alpha < n \sqrt{1 - \left(\frac{1}{n}\right)^2}$	1
Since $\alpha = 45^{\circ}$, we get $N < \frac{2}{\sqrt{2}} \sqrt{n^2 - 1}$	0.5
4.	
If $\varepsilon = 0$, $\delta = 0$ so $\gamma = 45^{\circ}$ and $\beta = 45^{\circ}$.	0.5
By using the Snell-Descartes' law at I_1 , we get N = n	0.5


2 – Projection system (7 points)

1. real object (we can touch the document), real image (observed on a screen)	0.25 + 0.25
2. converging lens with the object placed before F	0.5 + 0.5
3. We have 3 equations with 3 unknown elements:	
$I:\frac{1}{\overline{f'}} = \frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} \text{, which gives } \overline{f'} = \frac{\overline{OA'}\overline{OA}}{\overline{OA} - \overline{OA'}}$ $II:\gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{OA'}}{\overline{OA}} \text{, i.e. } \overline{OA'} = \gamma . \overline{OA}$	0.5
II: $\gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{OA'}}{\overline{OA}}$, i.e. $\overline{OA'} = \gamma . \overline{OA}$	0.5
$III: D = \frac{AB}{AO} + \frac{OA}{OA'} = -\overline{OA} + \overline{OA'},$	0.5
By combining II & III, we get $\overline{OA} = \frac{D}{\gamma - 1}$ and $\overline{OA'} = \frac{\gamma D}{\gamma - 1}$	1+1
Then, from I, $f' = \frac{-\gamma}{(\gamma-1)^2}D$	1
4. γ = -9	0.5
f' = 9 cm	0.5 (0 if no unit)

3 – Ray-tracing (3 points)

4 – Image-object ray diagrams (4 points)

