

Scan First Year 2020-2021

Physics - S1 – Exam #1

October 16, 2020

Duration: 1 h

Solutions and grading scale

Snell's window (7 points + bonus 0.5)	
1) Assumption : diver (or his camera) = point object	
Preliminary comment : in the following, it is also possible to consider the rays emitted by the diver (principle of ray reversibility). The conclusions will be exactly the same.	3 sources of ray coming onto the
- All the rays coming from the outside (= from the sun) can penetrate into water, because the optical index of water is larger than the optical index of the air. For an angle of incidence i ranging between 0 and 90°, the angle of refraction will range between 0 and a maximum r_c . If one calls r the angle between the ray coming onto the diver and the normal to the water-air interface, two cases have to be distinguished:	diver : Refraction: 1 At critical angle: 1
$1/$ if r is smaller than r_c , we can find an angle i such that one ray comes from the outside, is refracted. The diver sees the outside.	Above critical
$2/$ if r is larger than r_c , no angle i can be found. The rays coming onto the diver come either directly from underwater or are reflected at the water-air interface. The envelope of the rays coming from the outside form a cone of light. As a consequence, the diver sees a bright disk at the water-air interface. Outside this cone, the rays come from underwater. The cone is therefore surrounded by either a completely dark region, or a region where underwater objects are reflected (brightness far lower than in the cone	Quality of the scheme: 1 Quality of reasoning +
anyway). Air n = 1 $i = i_1 < 90^\circ$ $i = i_2 = 90^\circ$ $r = r_1 < r_c$ $r = r_1 < r_c$ $r = r_1 < r_c$ $r = r_2 > r_c$ r_c	writing: 1 + 0.5 bonus for reflection of underwater rays
2) Value of the critical angle: $r_c = \sin^{-1}(1/n) = \sin^{-1}(1/1,34) = 48,3^{\circ} (0,84 \text{ rad})$ Cone angle is $2r_c \approx 97^{\circ}$	1 (explanations + scheme)

Ray-tracing and calculations (7 points + bonus 0.5 pt)

III – Mirror in the film studio (6 points)

