

2nd Physics exam - SCAN FIRST November 19, 2021 (1 h 30 min) Correction and Grading scale

Exercise 1 : Optics - Lens doublet [3 pts.]

Exercise 2 : Optics - Archeology of teaching accessories [6 pts.]

1. For the mirror, the object and the image have the same size. Hence, the mirror does not change the magnification of the whole system.	discussion about the magnification	/0.5
all the rays are refected onto the mirror according to Snell-Descartes' law. In particular, as the mirror makes an angle of 45° with the optical axis, a ray on the optical axis will be reflected at 90° (figure needed to explain what happens on the mirror).	Clear explanation + scheme with at least one ray reflected onto the mirror	/0,5
2. We expect here a ray-diagram with the object, the thin converging lens and the image.	clear ray-diagram	/0,5
All useful quantities should be defined on the ray-diagram : \overline{AB} , $\overline{A'B'}$, the center <i>O</i> of the lens and its focal points <i>F</i> and <i>F'</i> .	definition of all quantities	/0,5
We make the assumption that paraxial approximation can be used.	assumption	+0,5 <i>BONUS</i>
We make the assumption that paraxial approximation can be used. 3. The image is reversed (converging lens with real object and real image).	assumption answer + explana- tion	+0,5BONUS /0,5
We make the assumption that paraxial approximation can be used. 3. The image is reversed (converging lens with real object and real image). 4. $\gamma = \overline{\frac{OA'}{OA}}$ and $\frac{1}{A'B'} - \frac{1}{\overline{AB}} = \frac{1}{f'}$	assumption answer + explana- tion 2 formulae	+0,5 <i>BONUS</i> /0,5 /0,25 each
We make the assumption that paraxial approximation can be used. 3. The image is reversed (converging lens with real object and real image). 4. $\gamma = \overline{\frac{OA'}{OA}}$ and $\frac{1}{A'B'} - \frac{1}{\overline{AB}} = \frac{1}{f'}$ we get $\overline{OA} = (\frac{1}{\gamma} - 1)f'$	assumption answer + explana- tion 2 formulae litteral expression	+0,5 <i>BONUS</i> /0,5 /0,25 each /0,5
We make the assumption that paraxial approximation can be used. 3. The image is reversed (converging lens with real object and real image). 4. $\gamma = \frac{\overline{OA'}}{\overline{OA}}$ and $\frac{1}{\overline{A'B'}} - \frac{1}{\overline{AB}} = \frac{1}{f'}$ we get $\overline{OA} = (\frac{1}{\gamma} - 1)f'$ numerical application : $\gamma = -3$ and $\overline{OA} \approx 423$ mm.	assumption answer + explana- tion 2 formulae litteral expression values with units	+0,5 <i>BONUS</i> /0,5 /0,25 each /0,5 /0,5
We make the assumption that paraxial approximation can be used. 3. The image is reversed (converging lens with real object and real image). 4. $\gamma = \overline{\frac{OA'}{OA}}$ and $\frac{1}{A'B'} - \frac{1}{AB} = \frac{1}{f'}$ we get $\overline{OA} = (\frac{1}{\gamma} - 1)f'$ numerical application : $\gamma = -3$ and $\overline{OA} \approx 423$ mm. \overline{OA} is compatible with the overhead projector specifications.	assumption answer + explana- tion 2 formulae litteral expression values with units conclusion	+0,5 <i>BONUS</i> /0,5 /0,25 each /0,5 /0,5 /0,5
We make the assumption that paraxial approximation can be used. 3. The image is reversed (converging lens with real object and real image). 4. $\gamma = \frac{\overline{OA'}}{\overline{OA}}$ and $\frac{1}{\overline{A'B'}} - \frac{1}{\overline{AB}} = \frac{1}{f'}$ we get $\overline{OA} = (\frac{1}{\gamma} - 1)f'$ numerical application : $\gamma = -3$ and $\overline{OA} \approx 423$ mm. \overline{OA} is compatible with the overhead projector specifications. 5. $\overline{OA'} = (1 - \gamma)f' = 1268$ mm.	assumption answer + explana- tion 2 formulae litteral expression values with units conclusion literal expression + value	+0,5 <i>BONUS</i> /0,5 /0,25 each /0,5 /0,5 /0,5 /0,5

Exercise 3 : Measures - friction due to viscous liquids. [5 pts.]

1. f so $[f] = MLT^{-2}$	Dimension of f	/0,25
$[6\pi\eta a\nu] = [6\pi][\eta][a][\nu] = 1 \times [\eta] \times L \times LT^{-1}$		1
$= [\eta] \times L^2 T^{-1}$	Dimension of the	/0,5
	other parameters	
therefore $[\eta] = \frac{MLT^{-2}}{L^2T^{-1}} = ML^{-1}T^{-1}$	Dimension of η	/0,25
2. η is in g.cm ⁻¹ .s ⁻¹		/0,25
3. $\eta = 0,8400 (10^{-3} \text{kg}).(10^{-2} \text{m})^{-1}.\text{s}^{-1} = 0,08400 \text{ kg}.\text{m}^{-1}.\text{s}^{-1}$		/0,5
4. $[v_{lim}] = LT^{-1}$	Dimension of v_{lim}	/0,25

$[\rho_s - \rho_m] = [\rho] = ML^{-3}$	No + in the dimensional equation and correct ex- pression of the dimen-	/0,5
$[g] = LT^{-2}$	sion of ρ Dimension of g	/0,25
$\begin{bmatrix} \frac{2}{9} \frac{(\rho_s - \rho_m)ga^2}{\eta} \end{bmatrix} = \frac{2}{9} \frac{[\rho_s - \rho_m][g][a]^2}{[\eta]}$ $= 1 \times \frac{ML^{-3} \times LT^{-2} \times L^2}{[\eta]} = LT^{-1}$	Dimension of the other quantities and correct expression	/0,5
Both terms have the same dimension, so the formula is thus homogeneous.	Clear conclusion sho- wing the relation bet- ween dimensional ana- lysis and homogeneity of the formula	/0,25
5. $a = 5,00.10^{-3} \text{ m}, \rho_s = 2,53.10^3 \text{ kg}.\text{m}^{-3} \text{ et } \rho_m = 0,91.10^3 \text{ kg}.\text{m}^{-3}$	Correct conversion of <i>a</i> (/0,25), ρ_s et ρ_m (/0,5), eventually of other quan- tities in the international system of units (or ano- ther coherent one).	/0,75
$v_{lim} = 1,05 \mathrm{m.s^{-1}}$	Numerical application	/0,25
$v_{lim} = 3,78 \mathrm{km.h^{-1}}$	Correct conversion in km.h ⁻¹	/0,5
Comment : give all the points if the final result is correct, even without explanations. On the contrary, no unit implies no point.		

Exercise 4 : Estimation of a battery discharging time [≈ 6 pts.]

FIGURE 1 – Experimental setup

Q1 : 1.0 Pt 0.5 Pt U_b orientation and +/- terminals

1. (a) Given measurements are carried out in active sign convention U_b has to be

	ISAN INSTITUT NATIONAL DES SCIENCES APPLIQUÉES LYON	FIMI Schoolyear 2021-2022
	directed in the same way than I (see Fig. 1). The orientations of U_b and I then dictate the position of the +/- terminals of the voltmeter and ammeter as shown in Fig.1.	
	(b) In the convention of Fig. 1 : $U_b = e - r I$	0.5 Pt
2.	Given the expression of U_b , the equation of the $I - V$ curve of the battery is :	Q2: 3.0 Pts
	$I = \frac{e - U_b}{r}$ <i>e</i> can be deduced from the intercept of the <i>I</i> – <i>V</i> curve while <i>r</i> can be deduced from the inverse of the slope.	<i>1 Pt</i> <i>I</i> vs U_b + extraction method of <i>e</i> and <i>r</i>
	Considering the uncertainty boxes of Fig.2, the curves of minimum and maximum slope can be plotted. These curves are used to extract e_{min} (resp. r_{min}) and e_{max} (resp. r_{max}).	<i>1 Pt</i> plots of $I - V$ curves on Fig.2 using uncertainty boxes

FIGURE 2 – Current-Voltage characteristics of the unknown battery

Numerical values :

<u>Note</u> : In the following calculations, the most pessimistic case was systematically

considered by rounding up (resp. down) maximal (resp. minimal) values to the nearest graduation available on the graph : 0.2 V for voltages and 0.1 A for currents. Uncertainties will therefore be over-estimated since we did not considered rounding to the nearest half-graduations.

The extreme values of *e* can be obtained from the intercepts of the 2 curves at $D \simeq (4.0 V, 0 A)$ and $B \simeq (5.0 V, 0 A)$:

$$e_{min} = 4.0 V$$
 and $e_{max} = 5.0 V$

Therefore :

$$e = \frac{1}{2} (e_{max} + e_{min}) = 4.50 V$$
$$\Delta e = \frac{1}{2} (e_{max} - e_{min}) = 0.50 V$$

Finally, keeping 2 significant digits, rounding *e* to the closest 0.1 *V* and Δe to the upper 0.1 *V* :

$$e = (4.5 \pm 0.5) V$$
 0.5 Pt

Using the same methodology, the minimal slope (s_{min}) thus $r_{max} = s_{min}^{-1}$ can be deduced from the 2 intercepts at $A \simeq (0 V, 2.3 A)$ and $B \simeq (5.0 V, 0 A)$:

$$r_{max} = \frac{1}{s_{min}} = \frac{5.0 V}{2.3 A} \simeq 2.17 \Omega$$

The maximal slope (s_{max}) thus $r_{min} = s_{max}^{-1}$ can be deduced from the 2 extreme points $C \simeq (0 V, 3.0 A)$ and $D \simeq (4.0 V, 0 A)$:

$$r_{min} = \frac{1}{s_{min}} = \frac{0.4 V}{3.0 A} \simeq 1.33 \Omega$$

using r_{min} and r_{max} :

$$r = \frac{1}{2} (r_{max} + r_{min}) \approx 1.75\Omega$$
$$\Delta r = \frac{1}{2} (r_{max} - r_{min}) \approx 0.43\Omega$$

Finally, keeping 2 significant digits by rounding *r* to the nearest 0.1Ω and Δr to the upper 0.1Ω :

 $r = (1.8 \pm 0.5) \Omega$

0.5 Pt r with uncertainties

3. (a) As we connect the battery to the load resistor, both device share the same **Q3** voltage across their terminals with *I* being the current flowing into the loop. The operating point therefore stands at the intersection point between the I - V curve of the battery (in ASC) and the I - V curve of the resistance (in PSC) given $U_b = R_0 I$

Taking into account the uncertainties, two extreme operating points can be determined from Fig. 2 :

e with uncertainties

FIMI Schoolyear 2021-2022

$$OP_1 \simeq (3.2 V; 0.6 A)$$
 and $OP_2 = (3.6 V; 0.7 A)$

(b) The power dissipated in the resistor writes : $P = R_0 I^2$. From the 2 operating points we can determine the minimum (maximum) power :

$$P_{min} = R_0 I_{min}^2 = (5\Omega) \cdot (0.6 A)^2 = 1.80 W$$
$$P_{max} = R_0 I_{max}^2 = (5\Omega) \cdot (0.7 A)^2 = 2.45 W$$

leading to :

$$P = (2.1 \pm 0.4) W$$

0.5 Pt Power and uncertainties

4. From a dimensional analysis : $[C_b] = I \cdot T$. The discharge time t_d is therefore homogenous to the ratio between the capacity C_b and a current intensity. Taking the minimum and maximum operating current determined previously :

$$t_d^{min} = \frac{C_b}{I_{max}^{op}} = 4.28 h$$
$$t_d^{max} = \frac{C_b}{I_{min}^{op}} = 5.00 h$$

leading to :

$$t_d = (4.6 \pm 0.4) \ h \tag{0.5 Pt}$$

The energy dissipated over the discharging time writes (with t_d in seconds): $E_d = P_d \cdot t_d$ The minimal/maximal enegy dissipated then write :

$$E_d^{min} = P_d^{min} \cdot t_d^{min}$$
 and $E_d^{max} = P_d^{max} \cdot t_d^{max}$

Using the previous values :

$$E_d^{min} \simeq 32.9 \, kJ$$
 and $E_d^{max} = 39.8 \, kJ$

Finally:

$$E_d = (36.3 \pm 3.4) \ kJ$$

0.5 Pt

0.5 Pt operating points