SCAN $1^{\text {st }}$

Mechanics test 1
Friday, $4^{\text {th }}$ March 2022 - Duration: $1 h$
1-page personal formula sheet authorised.

Exercise 1:

The aircraft in Figure 1 is diving at an angle α from the vertical at a speed v_{0}. The flight path is directed towards the target at A.

1 - If the aircraft drops a package at an altitude h, determine the time t when the package hits the ground $(y=0)$

2 - Deduce the distance d between the point of impact and the target at A.
3 - Numerical application for $\alpha=30^{\circ} ; h=1200 \mathrm{~m} ; v_{0}=200 \mathrm{~m} / \mathrm{s}$

Figure 1.

Exercise 2:

A ball of mass m is suspended from the accelerating frame by two strings A and B (Figure 2). Considering that the frame and ball experience the same acceleration $\mathbf{a}=a \mathbf{x}$,

1 - Determine the tensions in strings A and B in terms of m, a and g (acceleration of the gravity field).

Figure 2.

Exercise 3:

The rocket in Figure 2 is tracked by radar, which measures r, \dot{r}, \ddot{r} and θ.
1 - Using the fact that the trajectory is a vertical line in the \mathbf{y}-direction, express the angular speed $\dot{\theta}$ in terms of the measured variables. Deduce the speed (magnitude of velocity vector) when $r=5 \mathrm{~km}, \dot{r}=350 \mathrm{~m} / \mathrm{s}, \ddot{r}=100 \mathrm{~m} / \mathrm{s}^{2}$ and $\theta=40^{\circ}$

Bonus question - Same question for the acceleration.

Figure 3.

