

SCAN 1st

Mechanics test 1

Friday, 4th March 2022 – Duration: 1h 1-page personal formula sheet authorised.

Exercise 1:

The aircraft in Figure 1 is diving at an angle α from the vertical at a speed v_0 . The flight path is directed towards the target at A.

1 - If the aircraft drops a package at an altitude h, determine the time t^* when the package hits the ground (y = 0)

2 - Deduce the distance d between the point of impact and the target at A.

3 – Numerical application for $\alpha = 30^\circ$; h = 1200 m; $v_0 = 200 \text{ m/s}$

Figure 1.

Exercise 2:

A ball of mass *m* is suspended from the accelerating frame by two strings *A* and *B* (Figure 2). Considering that the frame and ball experience the same acceleration $\mathbf{a} = a \mathbf{x}$,

1 - Determine the tensions in strings A and B in terms of m, a and g (acceleration of the gravity field).

Muh

Exercise 3:

The rocket in Figure 2 is tracked by radar, which measures r, \dot{r}, \ddot{r} and θ .

1 – Using the fact that the trajectory is a vertical line in the **y**-direction, express the angular speed $\dot{\theta}$ in terms of the measured variables. Deduce the speed (magnitude of velocity vector) when r = 5 km, $\dot{r} = 350 \text{ m/s}$, $\ddot{r} = 100 \text{ m/s}^2$ and $\theta = 40^\circ$

Bonus question – Same question for the acceleration.

Figure 3.