

Nom: Prénom:

## Groupe:

| Exercice 1 : électricité – un capteur de position (14/40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | / 14 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|
| 1. À l'aide d'une loi des mailles ou d'un pont diviseur de tension, on obtient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |
| $\underline{u}_1 = \underline{e} \frac{jL_1\omega}{R + j(L_1 + L_2)\omega}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |      |
| $\underline{u}_2 = e \frac{j L_2 \omega}{R + j (L_1 + L_2) \omega}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   |      |
| $2. \underline{H} = \frac{\underline{u}_2 - \underline{u}_1}{\underline{e}} = \frac{j(L_2 - L_1)\omega}{R + j(L_1 + L_2)\omega}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |      |
| 1. A Taide d tine for desimalities out d'un point diviseur de tension, on obtient $ \underline{u}_1 = \underline{e} \frac{jL_1\omega}{R + j(L_1 + L_2)\omega} $ $ \underline{u}_2 = \underline{e} \frac{jL_2\omega}{R + j(L_1 + L_2)\omega} $ $ 2. \underline{H} = \frac{\underline{u}_2 - \underline{u}_1}{\underline{e}} = \frac{j(L_2 - L_1)\omega}{R + j(L_1 + L_2)\omega} $ $ L_2 - L_1 = 2L_0 \frac{\Delta z}{\delta} \text{ et } L_2 + L_1 = 2L_0, \text{ donc } \underline{H} = 2L_0 \frac{\Delta z}{\delta} \frac{j\omega}{R + 2jL_0\omega} = 2L_0 \frac{\Delta z}{R\delta} \frac{j\omega}{1 + j\frac{2L_0}{R}\omega} $ | 1   |      |
| En posant $\omega_0 = \frac{R}{2L_0} \Leftrightarrow R = 2L_0\omega_0$ , $\underline{H}$ se réécrit finalement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |
| $\underline{H} = \frac{\Delta z}{\delta} \frac{j\frac{\omega}{\omega_0}}{1 + j\frac{\omega}{\omega_0}} = H_0 \frac{j\frac{\omega}{\omega_0}}{1 + j\frac{\omega}{\omega_0}} \text{ (où on a bien retrouvé } H_0 = \frac{\Delta z}{\delta})$ $3. \text{ à BF} : \underline{H} \sim H_{as}^0 = H_0 \frac{j\frac{\omega}{\omega_0}}{1}$                                                                                                                                                                                                                                                                                              | 0.5 |      |
| 3. à BF: $\underline{H} \sim H_{as}^0 = H_0 \frac{j \frac{\omega}{\omega_0}}{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |      |
| (commencer par chercher $H_as$ avant de calculer module et phase permet d'avoir des calculs plus simples)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |      |
| et $G \rightarrow  H_{as}^0  = +H_0 \frac{\omega}{\omega_0}$ (puisque $ H_0  = H_0 > 0$ avec $\Delta z > 0$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |      |
| à HF: $\underline{H} \sim H_{as}^{\infty} = H_0 \frac{J \frac{\omega}{\omega_0}}{J \frac{\omega}{\omega_0}} = H_0$ , d'où $G \to H_0$ (puisque $H_0 > 0$ à $\Delta z > 0$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |      |
| Enfin $G_{dB}^{as0} = 20 \log H_0 + 20 \log \frac{\omega}{\omega_0}$ et $G_{dB}^{as,\infty} = 20 \log H_0$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1   |      |
| tracé avec asymptote à BF de pente +20 dB/décade, passant par $20\log H_0$ à $\omega = \omega_0$ et asymptote à HF horizontale à $20\log H_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.5 |      |
| 4. avec $H_0 > 0$ puisque $\Delta z > 0$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |      |
| à BF, on a trouvé $H_{as}^0 = H_0 \frac{j\omega}{\omega_0}$ , donc $\varphi \to arg(H_{as}^0) = +\frac{\pi}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.5 |      |
| à HF, on a trouvé $H_{as}^{\infty} = H_0$ , d'où $\varphi \to 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.5 |      |
| $\underline{\underline{H}}(\omega=\omega_0) = H_0 \frac{j}{1+j} = H_0 \frac{e^{j\frac{\pi}{2}}}{\sqrt{2}e^{j\frac{\pi}{4}}} = \frac{H_0}{\sqrt{2}}e^{j\frac{\pi}{4}}, \text{ et } \varphi(\omega=\omega_0) = arg(\underline{\underline{H}})(\omega=\omega_0) = \frac{\pi}{4}$                                                                                                                                                                                                                                                                                                                                                    | 1   |      |
| 5. Avec $\Delta z > 0$ , on a donc $\varphi = arg(H) \in \left[0, \frac{\pi}{2}\right]$ : toujours positif et $u_s(t)$ est toujours en avance sur $u_e(t)$ (la démo $\varphi > 0$ donc en avance n'est pas exigée = mettre un bonus si                                                                                                                                                                                                                                                                                                                                                                                           | 1   |      |
| faite correctement)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |
| 6. Si $\Delta z < 0$ , alors $\Delta z = - \Delta z $ . On en déduit plusieurs critères possible pour répondre : par                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |      |
| exemple i) $H_{as}^{\infty} = H_0 = -\frac{ \Delta z }{\delta}$ et $\varphi \to \pm \pi$ : à HF $u_s(t)$ et $u_e(t)$ sont en opposition de phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |      |
| si $\Delta z < 0$ , sinon ils sont en phase ii) $H_{as}^0 = -\frac{ \Delta z }{\delta} \frac{j\omega}{\omega_0}$ d'où $\varphi \to -\frac{\pi}{2}$ : $u_s(t)$ est en retard                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1   |      |
| $\sup u_e(t)$ à BF si $\Delta z < 0$ , sinon en avance iii) on trouve finalement $\varphi = arg(H) \in \left[-\pi, -\frac{\pi}{2}\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |      |
| avec $\Delta z < 0$ : $u_s(t)$ est toujours en retard sur $u_e(t)$ si $\Delta z < 0$ , sinon en avance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |      |
| 7. Le max est atteint à HF: $H_{as}^{\infty} =  H_0  = G_{max}$ . On cherche donc $\omega_c$ tq $G_{dB}(\omega_c) = G_{dB}^{max} - 3 \Leftrightarrow  \underline{H} ^2 = \frac{ H_0 ^2}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5 |      |
| $ G_{dB}(\omega_c) - G_{dB} ^{-3} \Leftrightarrow  \underline{\Pi} ^{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |      |

| soit $2\frac{\omega_c^2}{\omega_0^2} = 1 + \frac{\omega_c^2}{\omega_0^2} \Leftrightarrow \omega_c = \omega_0$                                                                                                                                                                                                                                             | 0.5       |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|
| 8. Filtre passe haut, de pulsation de coupure à -3dB $\omega_c = \omega_0$ (ou de fréquence de coupure $f = \frac{\omega_c}{2\pi}$ ), de pente à + 20dB/décade à BF, de gain max à HF $G_{max} =  H_0  = \frac{ \Delta z }{\delta}$                                                                                                                       | 1         |  |
| 9. Comme on veut le gain indépendant de $\omega$ , il faut travailler à HF et $\omega \gg \omega_0$                                                                                                                                                                                                                                                       | 0.5       |  |
| 10. On vérifie bien que $f = 4  \text{kHz} \gg \frac{1}{2\pi} \frac{R}{2L_0} \simeq 995  \text{Hz}$ , d'où $\underline{H} \sim H_{as}^{\infty} = H_0 = \frac{\Delta z}{\delta}$ et $u_s \simeq \Re \left( \underline{H} e_0 e^{J\omega t} \right) = \frac{\Delta z}{\delta} e_0 \cos \omega t$ : cqfd avec $\varphi = 0$ (remarque : reste vrai même avec | 1         |  |
| et $u_s \simeq \Re\left(\underline{H}e_0e^{J\omega t}\right) = \frac{\Delta z}{\delta}e_0\cos\omega t$ : cqfd avec $\varphi = 0$ (remarque: reste vrai même avec $\Delta z < 0$ )                                                                                                                                                                         | 0.5       |  |
| 11.a) Sur les deux termes, l'objectif est de conserver celui qui est continu : il suffit d'utiliser un filtre passe-bas pour éliminer la composante de pulsation $2\omega$ , donc avec $\omega_{c2} \ll 2\omega = 4\pi f = 16\pi  10^3 {\rm rad  s}^{-1}$                                                                                                 | 1         |  |
| 11.b) on sait que $Z_C \to \infty$ à BF (équivalent à un interrupteur ouvert), et $Z_C \to 0$ à HF,                                                                                                                                                                                                                                                       | 0.5       |  |
| et le filtre $RC$ avec sortie sur $C$ convient si on choisit $RC$ tq $\omega_{c2}$ respecte la condition vue en a). Autre solution : de même avec $RL$ sortie sur $R$ .                                                                                                                                                                                   | 0.5       |  |
| bonus : on doit donc choisir $RC$ tq $\frac{1}{RC} = \omega_{c2} \ll 16\pi  10^3  \text{rad s}^{-1}$ – ou bien $R$ et $L$ tq $\frac{R}{L} = \omega_{c2}$ (démo. de la fréquence de coupure du filtre $RC$ ou $RL$ non exigée)                                                                                                                             | bonus 0.5 |  |
| bonus : démonstration de la fréquence de coupure du filtre <i>RC</i> ou <i>RL</i>                                                                                                                                                                                                                                                                         | bonus 1   |  |

| <b>Exercice 2 :</b> Qu'est-il plus facile de faire tenir en équilibre? (12/40)                                                                                                                 | / 12 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| <b>Modélisation</b> 1. Le système étudié est l'objet (crayon ou canne), de masse $M$ et de lon-                                                                                                |      |
| gueur <i>L</i> , étudié dans le référentiel terrestre supposé galiléen. L'objet est en rotation au-                                                                                            |      |
| tour d'un axe fixe horizontal $(Oy)$ (hypothèse de non-glissement du point de contact sur                                                                                                      |      |
| le doigt). Sur le schéma, attention à la cohérence entre l'orientation de l'axe $(Oy)$ et de                                                                                                   |      |
| l'angle $\theta$ entre l'objet et la verticale (cf. figure 1).                                                                                                                                 |      |
| L'objet est soumis à son propre poids : $\overrightarrow{P} = m \overrightarrow{g}$ , appliqué au milieu de l'objet (supposé                                                                   |      |
| homogène) et à la réaction du doigt sur l'objet $\overrightarrow{R}$ , inconnue, appliquée au niveau du                                                                                        |      |
| point de contact, nommé O. Les frottements sont négligés par hypothèse.                                                                                                                        |      |
| Critères : Système + référentiel (0,5), schéma paramétré avec repère correct (0,5), descrip-                                                                                                   |      |
| tion des forces (nom, symbole, formule, dessin sur schéma : 1pt) Grandeurs pertinentes 2,5                                                                                                     |      |
| nommées $(M, L, \theta)$ $(0,5)$                                                                                                                                                               |      |
| Nature de l'équilibre 2. À l'équilibre du système, on a                                                                                                                                        |      |
| $\sum \overrightarrow{F_{ext}} = \overrightarrow{0} \qquad \text{et} \qquad \sum M \left( \overrightarrow{F_{ext}} \right)_{Oy} = 0 $ moments 0,5+1                                            |      |
| avec $M(\overrightarrow{R})_{OV} = 0$ car $\overrightarrow{R}$ coupe l'axe $Oy$ et $M(\overrightarrow{P})_{OV} = +Mg\frac{L}{2}\sin(\theta)$ .                                                 |      |
| Justification des moments (soit produit mixte, soit bras de levier spécifié sur schéma)                                                                                                        |      |
| La somme des moments amène à $sin(\theta) = 0$ , qui admet deux solutions entre 0 et $2\pi$ :                                                                                                  |      |
| $\theta = 0$ et $\theta = \pi$ . La seconde sera physiquement impossible : l'objet se sera détaché du                                                                                          |      |
| doigt. On s'intéresse à la stabilité de la première solution : $\theta = 0$ .                                                                                                                  |      |
| On peut soit faire une étude qualitative en envisageant un petit déplacement d $	heta$ positif.                                                                                                |      |
| Le seul moment du poids qui agit va alors avoir tendance à faire tourner l'objet dans le sens positif des angles, donc à faire croître $\theta$ et à éloigner l'objet de son équilibre. Il est |      |
| donc instable.                                                                                                                                                                                 |      |
| Sinon on peut faire une étude quantitative, en cherchant le signe de la dérivée se-<br>conde l'énergie potentielle de pesanteur $E_{pp}$ pour la position d'équilibre. On a alors              |      |
| $dE_{pp} = -dW(\overrightarrow{P}) = -M(\overrightarrow{P})_{Oy}d\theta = -Mg\frac{L}{2}\sin(\theta)d\theta$                                                                                   |      |



| D'où l'expression de la dérivée seconde : $\frac{\mathrm{d}^2 E_{pp}}{\mathrm{d}\theta^2} = -Mg\frac{L}{2}\cos(\theta)$ et $\frac{\mathrm{d}^2 E_{pp}}{\mathrm{d}\theta^2}\left(\theta_{eq}=0\right) = -Mg\frac{L}{2}$ est négatif, il s'agit donc d'un maximum d'énergie potentielle et donc d'un équilibre instable.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|
| <b>Résolution peu guidée</b> 3. Afin de rétablir l'équilibre, la personne va bouger son doigt. Plus la vitesse angulaire sera grande dans les premiers instants, plus l'objet se sera éloigné de sa position d'équilibre, le temps que la personne réagisse et plus il sera compliqué de rétablir un équilibre en adaptant la position de la main.                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              |  |
| 4. On cherche à déterminer $\dot{\theta}(t)$ . L'application du théorème du moment cinétique par rapport à l'axe $Oz$ amène à l'équation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |  |
| $J\ddot{\theta}=+Mg\frac{L}{2}\sin{(\theta)}$ qui devient aux petits angles $(\sin{(\theta)}\approx\theta)$ $\ddot{\theta}-\frac{3g}{2L}\theta=0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | équa diff 1    |  |
| L'équation caractéristique associée à cette équation différentielle est $r^2-\frac{3g}{2L}=0$ qui admet deux solutions réelles : $r=\pm\sqrt{\frac{3g}{2L}}$ D'où la solution de l'équation différentielle : $\theta(t)=A\exp\left(\sqrt{\frac{3g}{2L}}t\right)+B\exp\left(-\sqrt{\frac{3g}{2L}}t\right)$ , avec $A$ et $B$ des constantes à déterminer à l'aide des conditions initiales. On commence par écrire l'expression de la vitesse angulaire : $\dot{\theta}(t)=\sqrt{\frac{3g}{2L}}\left[A\exp\left(\sqrt{\frac{3g}{2L}}t\right)-B\exp\left(-\sqrt{\frac{3g}{2L}}t\right)\right]$ Or $\theta(0)=0=A+B$ et $\dot{\theta}(0)=\omega_0=\sqrt{\frac{3g}{2L}}(A-B)$ d'où $A=-B=\frac{\omega_0}{2\sqrt{\frac{2L}{3g}}}$ (en notant $\omega_0$ la vitesse angulaire initiale) | sol. 1         |  |
| Loi horaire de l'angle au début de la chute : $\theta(t) = \frac{\omega_0}{2} \sqrt{\frac{2L}{3g}} \left[ \exp\left(\sqrt{\frac{3g}{2L}}t\right) - \exp\left(-\sqrt{\frac{3g}{2L}}t\right) \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | constantes :   |  |
| Vitesse angulaire en début de chute : $\dot{\theta}(t) = \frac{\omega_0}{2} \left[ \exp\left(\sqrt{\frac{3g}{2L}}t\right) + \exp\left(-\sqrt{\frac{3g}{2L}}t\right) \right]$<br>En utilisant le développement limité proposé, on arrive à l'expression approchée $\dot{\theta}(t) = \frac{\omega_0}{2} \left(2 + \frac{3g}{2L}t^2\right)$<br>On peut vérifier la dimension du deuxième terme : $\dim\left(\frac{3gt^2}{2L}\right) = \frac{LT^{-2}T^2}{L} = 1$                                                                                                                                                                                                                                                                                                                     | 1<br>bonus 0,5 |  |
| <b>Interprétation</b> 5. On remarque que la vitesse angulaire est croissante au cours du temps (terme en $t^2$ , donc croissance rapide), ce qui est physiquement logique : il y a une accélération de la rotation de l'objet. Ensuite on remarque que ce deuxième terme est inversement proportionnel à la longueur L de l'objet. Donc plus la longueur $L$ sera grande, plus la croissance de la vitesse angulaire sera faible. Il vaut donc mieux avoir un objet long pour que la vitesse angulaire augmente moins rapidement et laisse davantage de temps à la personne de rétablir l'équilibre.                                                                                                                                                                              | 1,5            |  |

| Exercice 3 : Avec des forces de Laplace (14/40)                                                                                                                              |     | / 14 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|
| 1.                                                                                                                                                                           |     |      |
| Équilibre de la tige AB dans RTSG.                                                                                                                                           |     |      |
| Bilan des forces : poids suivant $\vec{e}_z$ , réactions en A et B suivant $\vec{e}_z$ , force du ressort $\vec{F}_r$ suivant $\vec{e}_x$ et force de Laplace $\vec{F}_\ell$ | 0.5 |      |
| Force du ressort : $\vec{F}_r = -kx\vec{e}_x$                                                                                                                                | 0.5 |      |



| Force de Laplace : $d\vec{F}_{\ell} = I \overrightarrow{d\ell} \wedge \vec{B} = I dy B \vec{e}_x$ , d'où $\vec{F}_{\ell} = \int_{y=-\frac{a}{2}}^{\frac{a}{2}} d\vec{F}_{\ell} = I a B \vec{e}_x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1          |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|
| avec $I = \frac{E}{R}$ de flèche dans le sens de $E$ , et $\overrightarrow{d\ell}$ dans le sens de la flèche de $I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5        |  |
| PFS projeté sur $\vec{e}_x$ : $F_r + F_l = 0 = -kx_1 + \frac{E}{R}aB$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |  |
| Soit $x_1 = \frac{Eab}{kR}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.5        |  |
| 2. (la tige n'est plus soumise à l'action de la force de Laplace)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /3         |  |
| PFD projeté sur $\vec{e}_x$ : $m\ddot{x} = -kx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |
| $\ddot{x} + \frac{k}{m}x = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.5        |  |
| $x(t) = A\cos(\omega_0 t + \varphi) \text{ avec } \omega_0^2 = \frac{k}{m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.5 + 0.5  |  |
| A et $\varphi$ à déterminer avec les conditions initiales sur $x(0) = x_1$ et $\dot{x}(0) = 0$ et on obtient : $x(t) = x_1 \cos(\omega_0 t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.5 + 0.5  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /2.5       |  |
| $\begin{array}{l} 3. \\ \mathscr{E}_{M0} = E_c + E_p \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5        |  |
| $\mathcal{E}_{M0} = E_c + E_p$ $E_c = \frac{1}{2}m\dot{x}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.5        |  |
| $E_p = E_{p,p} + E_{p,ressort} = E_{p,ressort} = \frac{1}{2}kx^2 \text{ (car } E_{p,p} = K = 0 \text{ (arbitraire) )}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5 + 0.5  |  |
| Soit $\mathcal{E}_{M0} = \frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |  |
| 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /2         |  |
| Force de Laplace : $\vec{F}_{\ell} = i(t)aB\vec{e}_x$<br>PFD projeté sur $\vec{e}_x$ : $m\ddot{x} = i(t)aB - kx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.5<br>0.5 |  |
| $\begin{vmatrix} \dot{x} + \dot{k} & iaB \\ \ddot{x} + -x & iaB \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.3        |  |
| m $m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /1         |  |
| $ \left  \begin{array}{c} 5. \\ \left( -\frac{d\mathscr{E}_{M0}}{dt} \right) = -P_J \end{array} \right  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |  |
| Avec $P_J = Ri^2$ (rappel: $\mathcal{E}_{M0} = \frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5        |  |
| $m\ddot{x}\dot{x} + kx\dot{x} = -Ri^{2} \Leftrightarrow \dot{x}(m\ddot{x} + kx) = -Ri^{2}$ $\dot{x}(iaB) = -Ri^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1<br>0.5   |  |
| $\begin{cases} x(tab) = -Rt \\ \text{Soit } i(t) = -\frac{aB\dot{x}}{R} \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.5        |  |
| The state of the s | /2         |  |
| $\begin{bmatrix} 6. \\ & k & iaB & (aB)^2 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |  |
| $\ddot{x} + \frac{k}{m}x = \frac{iaB}{m} = -\frac{(aB)^2}{mR}\dot{x}$ $\ddot{x} + \frac{(aB)^2}{mR}\dot{x} + \frac{k}{m}x = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |  |
| $\ddot{x} + \frac{\ddot{x} + \ddot{x}}{mR}\dot{x} + \frac{\ddot{x}}{m}x = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /1         |  |
| 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |  |
| Équation caractéristique : $r^2 + 2\delta r + \omega_0^2 = 0$ $A = 4(\delta^2 - \omega_0^2) = (aB)^4 - 4k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.5        |  |
| $\Delta = 4(\delta^2 - \omega_0^2) = \frac{(aB)^4}{(mR)^2} - \frac{4k}{m}$ $\Delta = 0 \text{ pour } B_c \text{ soit } B_c = \frac{1}{a} (4R^2 km)^{1/4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5        |  |
| $\Delta = 0 \text{ pour } B_c \text{ soit } B_c = -(4K^-Km)^{r}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.3        |  |

|                                                                                                        | /1.5     |  |
|--------------------------------------------------------------------------------------------------------|----------|--|
| 8.                                                                                                     |          |  |
| Si $B < B_C$ alors $\Delta < 0$ et le mouvement de la tige est oscillant amorti.                       |          |  |
|                                                                                                        | /1       |  |
| 9. Question bonus                                                                                      |          |  |
| $x(t)$ de la forme : $x(t) = Ae^{-\delta t}\cos(\omega t + \phi)$                                      | 0.5      |  |
| avec: $2\delta = \frac{(aB)^2}{mR}$ , $\omega_0^2 = \frac{k}{m}$ et $\omega^2 = \omega_0^2 - \delta^2$ | 0.5 x3   |  |
|                                                                                                        | /2 bonus |  |

FIGURE 1 – Figures des exercices 2 et 3

fin de l'IEFS-S2 juin 2023