

Physics test 1 – SCAN – Correction

Exercise 1: Determination of a static friction coefficient – 13.5 points.				
Elements of correction, expected items and grading scale				
 Method 1: Measure of the critical angle. (a) In order to determine tan(α) one can use a right-angled triangle on the picture, and measure with a ruler the adjacent (noted <i>b</i>) and opposite (noted <i>a</i>) sides, and compute the ratio: ^{<i>a</i>}/_{<i>b</i>}. Indeed, tan(α) = ^{<i>a</i>}/_{<i>b</i>}. <i>Note that there is no need to have a scale</i> 	Definition of the tan- gent. No confusion between "measure" and "compute". <i>Bonus: 0.5</i>	/1		
 (b) Uncertainty sources are: Reading on the ruler ("man"), 2 times half a graduation: 1 mm Ruler positioning on the picture (picture quality for determining the board extremities ("method"): 1 mm Parallax issue when taking the picture ("method") : negligible. 	1 pt for sources and 1 pt for the estimations.	/2		
 (c) According to figure 1, we get: <i>a</i> = (25 ± 2) mm. <i>b</i> = (86 ± 2) mm. 	No point if no unit or incoherence between values and uncertain- ties.	/1		

b = 86 mm

 (d) Determination of maximal μ_{s max} and minimal μ_{s min} values of static friction coefficient μ: μ_{s max} = amax/bmin = 25+2/86-2 ≈ 0,3214 μ_{s min} = amin/bmax = 25-2/86+2 ≈ 0,2614 Static friction coefficient and uncertainty: μ_s = μ_{s max}+μ_{s min}/2 ≈ 0,2913 and : Δμ_s = μ_{s max}-μ_{s min}/2 ≈ 0,00300 The static friction coefficient is thus: μ_s = (0,29±0,03). 	1 pt for $\mu_{s max}$ and $\mu_{s min}$, 1 pt for μ_s and $\Delta \mu_s$ and 0.5 pt for final result (No point if decimals are different or if final result is written with more than 2 digits (direct measures cannot have more digits).	/2.5
 2. Method 2: Change the mass of the tested body. Using figure 2, we get the maximum μ_{s max} and minimum μ_{s min} values of the friction coefficient, which correspond respectively to the max and min slopes, since we have m = μ_s × M: - μ_{s max} = 440/1700 ≈ 0,2588 - μ_{s min} = 520/2100 ≈ 0,2476 Static friction coefficient and uncertainty: μ_s = μ_{s max}+μ_{s min}/2 ≈ 0,2532 et : Δμ_s = μ_{s max}-μ_{s min}/2 ≈ 0,00560 The static friction coefficient is thus: μ_s = (0,25±0,01). 	1 pt for each regres- sion line (remove 0.5 pt if the line does no go through the ori- gin). 1 pt for the determi- nation of each slope. 1 pt for the value of μ_s and its uncertainty. 1 pt for the final re- sult.	/6

Figure 2: Method 2

3. Comparison of the two methods.With these measures, we see that the measured intervals do not intersect (see figure 3). We can estimate that method 2 should be more accurate, but longer.	0.5 pt for intervals comparison and 0.5 pt for any relevant re- mark.	/1
---	--	----

Figure 3: Measured intervals from the two methods

Exercise 2: Study of a wind turbine – 6.5 points				
Elements of correction, expected items and grading scale				
1. Total efficiency: $\eta_t = \frac{\text{Electric energy provided by the alternator}}{\text{Mechanical energy provided by the wind}}$	0.5			
Mechanical efficiency: $\eta_m = \frac{\text{Mechanical energy provided by the rotor}}{\text{Mechanical energy provided by the wind}}$	0.5	/1.5		
Expected keywords: thermal dissipation/losses, friction (mechanical), Joule's effect	0.25 per relevant key- word, up to 0.5 pts			
2. Electric power. According to the text, one can write: $P = k\rho^{\alpha} v^{\beta} l^{\gamma}$, which gives $[P] = [k] \times [\rho^{\alpha}] \times [v^{\beta}] \times [l^{\gamma}]$. A power has the dimension of an energy per unit time: $[P] = ML^2T^{-3}$. More- over: $[k] = 1$; $[\rho] = ML^{-3}$; $[v] = ML^{-1}$ and $[l] = L$. We get: $ML^2T^{-3} = M^{\alpha} L^{-3\alpha}L^{\beta} T^{-\beta}L^{\gamma}$, leading to the following equations with 3 unknowns: $\begin{cases} \alpha = 1 \\ -3\alpha + \beta + \gamma = 2 \\ -\beta = -3 \end{cases}$; so $it: \begin{cases} \alpha = 1 \\ \beta = 3 \\ \gamma = 2 \end{cases}$ $\Rightarrow P = k\rho v^3 l^2$	 0.5 pt for the dimension of a power. 0.5 pt for the dimension of a mass density. 0.5 pt for the dimensional equation. 1 pt for solving the equation and final writing. 	/2.5		
3. Power conversion. Mass conversion: $m = 550 \text{ lb} \times \left(\frac{0.4536 \text{ kg}}{1 \text{ lb}}\right) = 249.48 \text{ kg}$ Velocity: $v = 1 \text{ ft} \cdot \text{s}^{-1} = 0.3048 \text{ m} \cdot \text{s}^{-1}$ Power: $1 \text{ HP} = 746 \text{ W}$ Power in nominal working conditions: $P_{\text{nom}} = 3 \text{ MW} \times \left(\frac{1 \text{ HP}}{746 \text{ W}}\right) = 4.02 \times 10^3 \text{ HP}$	0.5 0.25 0.5 1	/2.5		
Result with 3 digits	0.25			