Physics test 1 - SCAN - Correction

ercise 1: Determination of a static friction coefficient - 13.5 points.		
Elements of correction, expected items and grading scale		
1. Method 1: Measure of the critical angle. (a) In order to determine $\tan (\alpha)$ one can use a right-angled triangle on the picture, and measure with a ruler the adjacent (noted b) and opposite (noted a) sides, and compute the ratio: $\frac{a}{b}$. Indeed, $\tan (\alpha)=\frac{a}{b}$. Note that there is no need to have a scale	Definition of the tangent. No confusion between "measure" and "compute". Bonus: 0.5	/1
(b) Uncertainty sources are: - Reading on the ruler ("man"), 2 times half a graduation: 1 mm - Ruler positioning on the picture (picture quality for determining the board extremities ("method"): 1 mm - Parallax issue when taking the picture ("method") : negligible.	1 pt for sources and 1 pt for the estimations.	12
(c) According to figure 1 , we get: $\begin{aligned} -a & =(25 \pm 2) \mathrm{mm} . \\ -b & =(86 \pm 2) \mathrm{mm} . \end{aligned}$	No point if no unit or incoherence between values and uncertainties.	/1

Figure 1: Method 1
(d) Determination of maximal $\mu_{s \text { max }}$ and minimal $\mu_{s \text { min }}$ values of static friction coefficient μ :

$$
-\mu_{s_{\text {max }}}=\frac{a_{\max }}{b_{\min }}=\frac{25+2}{86-2} \approx 0,3214
$$

$$
-\mu_{s \text { min }}=\frac{a_{\min }}{b_{\max }}=\frac{25-2}{86+2} \approx 0,2614
$$

Static friction coefficient and uncertainty:

$$
\mu_{s}=\frac{\mu_{s \max }+\mu_{s \min }}{2} \approx 0,2913 \text { and }: \Delta \mu_{s}=\frac{\mu_{s \max }-\mu_{s \min }}{2} \approx 0,00300
$$

The static friction coefficient is thus: $\mu_{s}=(0,29 \pm 0,03)$.

2. Method 2: Change the mass of the tested body.

Using figure 2, we get the maximum $\mu_{s \text { max }}$ and minimum $\mu_{s \text { min }}$ values of the friction coefficient, which correspond respectively to the max and min slopes, since we have $m=\mu_{s} \times M$:

- $\mu_{s \text { max }}=\frac{440}{1700} \approx 0,2588$
- $\mu_{\text {s } \text { min }}=\frac{520}{2100} \approx 0,2476$

Static friction coefficient and uncertainty:

$$
\mu_{s}=\frac{\mu_{s \max }+\mu_{s \min }}{2} \approx 0,2532 \text { et }: \Delta \mu_{s}=\frac{\mu_{s \max }-\mu_{s \min }}{2} \approx 0,00560
$$

The static friction coefficient is thus: $\mu_{s}=(0,25 \pm 0,01)$.

1 pt for $\mu_{s \text { max }}$ and $\mu_{s \text { min }}, 1 \mathrm{pt}$ for μ_{s} and $\Delta \mu_{s}$ and 0.5 pt for final result (No point if decimals are different or if final result is written with more than 2 digits (direct measures cannot have more digits).

1 pt for each regression line (remove 0.5 pt if the line does no go through the origin).
1 pt for the determination of each slope. 1 pt for the value of μ_{s} and its uncertainty. 1 pt for the final result.

\qquad
 -

3. Comparison of the two methods.

With these measures, we see that the measured intervals do not intersect (see figure 3). We can estimate that method 2 should be more accurate, but longer.
0.5 pt for intervals comparison and 0.5 pt for any relevant remark.

Figure 3: Measured intervals from the two methods

Exercise 2: Study of a wind turbine -6.5 points

Elements of correction, expected items and grading scale

1. Total efficiency: $\eta_{t}=\frac{\text { Electric energy provided by the alternator }}{\text { Mechanical energy provided by the wind }}$

Mechanical efficiency: $\eta_{m}=\frac{\text { Mechanical energy provided by the rotor }}{\text { Mechanical energy provided by the wind }}$

Expected keywords:
thermal dissipation/losses, friction (mechanical), Joule's effect

2. Electric power.

According to the text, one can write: $P=k \rho^{\alpha} v^{\beta} l^{\gamma}$, which gives $[P]=[k] \times\left[\rho^{\alpha}\right] \times\left[v^{\beta}\right] \times\left[l^{\gamma}\right]$.
A power has the dimension of an energy per unit time: $[P]=\mathrm{ML}^{2} \mathrm{~T}^{-3}$. Moreover: $[k]=1 ;[\rho]=\mathrm{ML}^{-3} ;[\nu]=\mathrm{ML}^{-1}$ and $[l]=\mathrm{L}$.
We get: $\mathrm{ML}^{2} \mathrm{~T}^{-3}=\mathrm{M}^{\alpha} \mathrm{L}^{-3 \alpha} \mathrm{~L}^{\beta} \mathrm{T}^{-\beta} \mathrm{L}^{\gamma}$, leading to the following equations with 3
unknowns: $\left\{\begin{array}{l}\alpha=1 \\ -3 \alpha+\beta+\gamma=2 \\ -\beta=-3\end{array} \quad\right.$;soit: $\left\{\begin{array}{l}\alpha=1 \\ \beta=3 \\ \gamma=2\end{array} \Leftrightarrow P=k \rho v^{3} l^{2}\right.$

3. Power conversion.

Mass conversion: $m=550 \mathrm{lb} \times\left(\frac{0.4536 \mathrm{~kg}}{1 \mathrm{lb}}\right)=249.48 \mathrm{~kg}$
Velocity: $v=1 \mathrm{ft} \cdot \mathrm{s}^{-1}=0.3048 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
Power: 1 HP = 746 W
Power in nominal working conditions:

$$
P_{\mathrm{nom}}=3 \mathrm{MW} \times\left(\frac{1 \mathrm{HP}}{746 \mathrm{~W}}\right)=4.02 \times 10^{3} \mathrm{HP}
$$

Result with 3 digits
0.5
0.5
0.25 per relevant keyword, up to 0.5 pts
0.5 pt for the dimension of a power.
0.5 pt for the dimension of a mass density. 0.5 pt for the dimen-
sional equation.
1 pt for solving the equation and final writing.

