

IE2 - Correction

Exercise 1 : Analysis of an I-V curve - 5 points	ana da
Elements of correction, expected items	grade
1. Given the chosen orientation for <i>U</i> and <i>I</i> we have a Passive Sign Convention (PSC)	0.5
	1
 3. In PSC the absorbed power writes : P = U * I Reading I values on Fig.1 we get : U = 10V, I = −3A ⇒ P = −30W 	1 (0.5pt for each powe
• $0 = 10^{\circ}, 1 = -3^{\circ} P = -30^{\circ} V$	-
• $U = 20$ V, $I \approx +3$ A $\Rightarrow P = 60$ W	±5W can be accepted)
In PSC, $P > 0$ means the PV modules absorbs power while it delivers power if $P < 0$	
\Rightarrow the module delivers power for $U = 10V$ and receives power for $U = 20V$.	0.5
4.In PSC, the PV module delivers power as $P < 0$. Since $U > 0$ in Fig. 1 the module delivers	
power as $I < 0$. In the $[0V, 15V]$ region I is almost constant ($\approx -3A$) for increasing U values. Then I falls to zero from 15V to $\sim 19V$.	1.5
The maximum delivered power can thus be brought at $U = 15$ V $I = -3$ A : $P_{\text{max}} \approx 45$ W	
5. From available data and a dimensional analysis : $Plum = A * G_m = 500W$	
The efficiency is then : $\eta = P_{\text{max}}/P_{\text{lum}} \approx 9\%$	0.5

Exercise 2 : Static study of a bike transmission chain - 7 points

Elements of correction, expected items	grade
1. $\vec{R}_{\text{bike}} = R_x \vec{u}_x + R_y \vec{u}_y$ $\vec{F}_{\text{foot}} \beta$ \vec{F}_B \vec{U}_z \vec{u}_x \vec{U}_z	1
$\vec{F}_{\rm C} = -\vec{F}_{\rm B}$ 0.5 pts of the forces representation + 0.5 pts for the definition of the Cartesian basis and the forces expressions in that base (give points later if necessary).	
$2. \overrightarrow{\mathcal{M}}_{\overrightarrow{F}_{\text{foot}}}(A) = \overrightarrow{AM} \times \overrightarrow{F}_{\text{foot}}$ $= L(-\cos\alpha \overrightarrow{u_x} + \sin\alpha \overrightarrow{u_y}) \times \ \overrightarrow{F}_{\text{foot}}\ (-\sin\beta \overrightarrow{u_x} - \cos\beta \overrightarrow{u_y})$ $= L\ \overrightarrow{F}_{\text{foot}}\ (\cos\alpha \cos\beta + \sin\alpha \sin\beta) \overrightarrow{u_z} = L\ \overrightarrow{F}_{\text{foot}}\ \cos(\alpha - \beta) \overrightarrow{u_z}$ $0.5 \text{ pts per vector} + 1 \text{ pt for the result.}$	2
3. The total moment resulting from the chain is $\vec{\mathcal{M}}_{chain}(A) = \vec{\mathcal{M}}_{\vec{F}_B}(A) + \vec{\mathcal{M}}_{\vec{F}_C}(A)$ $\vec{\mathcal{M}}_{chain}(A) = -2R \ \vec{F}_B\ \vec{u_z}$	1
4. At equilibrium, $\Sigma \overrightarrow{\mathcal{M}}_{ext}(A) = \overrightarrow{0}$ Since the weight $\overrightarrow{W}_{chain-ring}$ and the bike reaction force $\overrightarrow{R}_{bike}$ are both applied on <i>A</i> , their moments about point <i>A</i> are nil. As a result, at equilibrium we get $\ \overrightarrow{F}_B\ = \frac{L}{2R} \cos(\alpha - \beta) \ \overrightarrow{F}_{foot}\ $	0.5 0.5
$\gamma = \frac{L}{2R}\cos(\alpha - \beta)$	0.5
5. At equilibrium, $\Sigma \vec{F}_{ext} = \vec{0}$	0.5
$R_x = \ \vec{F}_{\text{foot}}\ \sin \beta$	0.5
$R_y = mg + \ \vec{F}_{\text{foot}}\ \cos\beta$	0.5

Exercise 3 : Kinematics - 8 points (+1.5pt bonus)

Elements of correction, expected items	grade
$1. \dim(a) = \dim(r) = L$	0.5
dim (b) $T^2 = 1$, hence dim (b) = T^{-2}	0.5
2. The radius <i>r</i> is constant, angle θ and altitude <i>z</i> vary with the same time dependency. Point	0.5
<i>M</i> is thus moving on a cylinder, its motion is helical, of axis <i>Oz</i> and radius <i>a</i> .	0.5
A full turn between times t_1 and t_2 corresponds a variation in angle θ of 2π :	
$\Delta \theta = \theta \left(t_2 \right) - \theta \left(t_1 \right) = 3b \left(t_2^2 - t_1^2 \right) = 2\pi.$	
The change in altitude is then :	1.5
$\Delta z = z(t_2) - z(t_1) = ab(t_2^2 - t_1^2)$	
$\Delta z = \frac{2a\pi}{3}$	
$\begin{bmatrix} \Delta z - \frac{1}{3} \end{bmatrix}$	
We can check that $\dim\left(\frac{2a\pi}{3}\right) = L$.	
One can note that $z = a\theta/3$ and use this directly.	
3. Position vector : $\overrightarrow{OM} = a\overrightarrow{e_r} + abt^2\overrightarrow{e_z}$	0.5
We differentiate with respect to time to get the velocity vector :	
$\vec{v} = \frac{d\vec{OM}}{dt} = a\dot{\theta}\vec{e_{\theta}} + 2abt\vec{e_{r}}$	
$\vec{v} = 6abt\vec{e_{\theta}} + 2abt\vec{e_{z}}$	1
Note : we can check the homogeneity : dim $(abt) = LT^{-2}T = LT^{-1}$	
We differentiate again to get the acceleration vector :	
$\overrightarrow{a} = \frac{d\overrightarrow{v}}{dt} = -36ab^2t^2\overrightarrow{e_r} + 6ab\overrightarrow{e_\theta} + 2ab\overrightarrow{e_z}$	1
Note : we can check the homogeneity : dim $(ab) = LT^{-2}$ and dim $(ab^2t^2) = LT^{-4}T^2 = LT^{-2}$	
4. The velocity in Frenet-Serret frame is $\vec{v} = \ \vec{v}\ \ \vec{u}_T = \frac{d\ell}{dt} \vec{u}_T$.	0.5
We have thus	
$ \rightarrow \vec{v} 2abt[3\vec{e_{\theta}} + \vec{e_{z}}] \rightarrow 3\vec{e_{\theta}} + \vec{e_{z}} $	1
$\vec{u}_T = \frac{\vec{v}}{\ \vec{v}\ } = \frac{2abt[3\vec{e}_{\theta} + \vec{e}_z]}{2abt\sqrt{9+1}} \vec{u}_T = \frac{3\vec{e}_{\theta} + \vec{e}_z}{\sqrt{10}}$	
Remark : if $ab < 0$, the tangent vector is $\vec{u_T} = -\frac{3\vec{e_{\theta}} + \vec{e_z}}{\sqrt{10}}$	bonus 0.5
5. This is the arclength at time t_1 .	
Knowing that $\frac{d\ell}{dt} = \ \vec{v}\ = 2abt\sqrt{10}$, we get : $\ell(t_1) - \ell(0) = \int_0^{t_1} 2abt\sqrt{10}dt$.	
Taking $\ell(0) = 0$,	1.5
$\ell(t_1) = ab\sqrt{10}t_1^2$	
Dimension of ℓ : dim $(abt^2) = LT^{-2}T^2 = L.$	
6. From the expression of \vec{a} and $\vec{u_T}$, we see that	
$\vec{a} = 2ab\sqrt{10}\vec{u_T} - 36ab^2t^2\vec{e_r}$	
In the Frenet-Serret frame, $\vec{a} = \frac{d\ \vec{v}\ }{dt}\vec{u}_T + \frac{\ \vec{v}\ ^2}{R_c}\vec{u}_N$, with R_c the local radius of curvature.	bonus 1
By identification, we find that $\vec{u_N} = -\vec{e_r}$ ($a > 0$, it is a radius), and	
$R_{c} = \frac{\ \vec{v}\ ^{2}}{36ab^{2}t^{2}} = \frac{10}{9}a$	