IE2 - Correction

Exercise 1 : Analysis of an I-V curve - 5 points

Elements of correction, expected items	grade
1. Given the chosen orientation for U and I we have a Passive Sign Convention (PSC)	0.5
2.	and

Exercise 2: Static study of a bike transmission chain - 7 points

Elements of correction, expected items	grade
1.	

Exercise 3 : Kinematics - 8 points (+1.5pt bonus)

Elements of correction, expected
$1 . \operatorname{dim}(a)=\operatorname{dim}(r)=\mathrm{L}$
$\operatorname{dim}(b) T^{2}=1$, hence $\operatorname{dim}(b)=\mathrm{T}$
2. The radius r is constant, angle
M is thus moving on a cylinder, it
A full turn between times t_{1}
$\Delta \theta=\theta\left(t_{2}\right)-\theta\left(t_{1}\right)=3 b\left(t_{2}^{2}-t_{1}^{2}\right)=$
The change in altitude is then:
$\Delta z=z\left(t_{2}\right)-z\left(t_{1}\right)=a b\left(t_{2}^{2}-t_{1}^{2}\right)$
$\Delta z=\frac{2 a \pi}{3}$

We can check that $\operatorname{dim}\left(\frac{2 a \pi}{3}\right)=\mathrm{L}$.
One can note that $z=a \theta / 3$ and use this directly.
3. Position vector: $\overrightarrow{O M}=a \overrightarrow{e_{r}}+a b t^{2} \overrightarrow{e_{z}} \quad 0.5$

We differentiate with respect to time to get the velocity vector :
$\vec{v}=\frac{\mathrm{d} \overrightarrow{O M}}{\mathrm{~d} t}=a \dot{\theta} \overrightarrow{e_{\theta}}+2 a b t \overrightarrow{e_{r}}$
$\vec{v}=6 a b t \overrightarrow{e_{\theta}}+2 a b t \overrightarrow{e_{z}}$
Note : we can check the homogeneity : $\operatorname{dim}(a b t)=L T^{-2} T=L T^{-1}$
We differentiate again to get the acceleration vector :
$\vec{a}=\frac{\mathrm{d} \vec{v}}{\mathrm{~d} t}=-36 a b^{2} t^{2} \overrightarrow{e_{r}}+6 a b \overrightarrow{e_{\theta}}+2 a b \overrightarrow{e_{z}}$
Note : we can check the homogeneity : $\operatorname{dim}(a b)=L T^{-2}$ and $\operatorname{dim}\left(a b^{2} t^{2}\right)=L T^{-4} T^{2}=L T^{-2}$
4. The velocity in Frenet-Serret frame is $\vec{v}=\|\vec{v}\| \overrightarrow{u_{T}}=\frac{\mathrm{d} \ell}{\mathrm{d} t} \overrightarrow{u_{T}}$.

We have thus
$\overrightarrow{u_{T}}=\frac{\vec{v}}{\|\vec{v}\|}=\frac{2 a b t\left[3 \overrightarrow{e_{\theta}}+\overrightarrow{e_{3}}\right]}{2 a b t \sqrt{9+1}} \overrightarrow{u_{T}}=\frac{3 \overrightarrow{e_{\theta}}+\overrightarrow{e_{z}}}{\sqrt{10}}$

Remark : if $a b<0$, the tangent vector is $\overrightarrow{u_{T}}=-\frac{3 \overrightarrow{e_{\theta}}+\overrightarrow{e_{z}}}{\sqrt{10}}$
bonus 0.5
5 . This is the arclength at time t_{1}.
Knowing that $\frac{\mathrm{d} \ell}{\mathrm{d} t}=\|\vec{v}\|=2 a b t \sqrt{10}$, we get : $\ell\left(t_{1}\right)-\ell(0)=\int_{0}^{t_{1}} 2 a b t \sqrt{10} \mathrm{~d} t$.
Taking $\ell(0)=0$,
$\ell\left(t_{1}\right)=a b \sqrt{10} t_{1}^{2}$
Dimension of $\ell: \operatorname{dim}\left(a b t^{2}\right)=L T^{-2} T^{2}=L$.
6. From the expression of \vec{a} and $\overrightarrow{u_{T}}$, we see that
$\vec{a}=2 a b \sqrt{10} \overrightarrow{u_{T}}-36 a b^{2} t^{2} \overrightarrow{e_{r}}$
In the Frenet-Serret frame, $\vec{a}=\frac{d\|\vec{v}\|}{d t} \overrightarrow{u_{T}}+\frac{\|\vec{v}\|^{2}}{R_{c}} \overrightarrow{u_{N}}$, with R_{c} the local radius of curvature.
bonus 1

By identification, we find that $\overrightarrow{u_{N}}=-\overrightarrow{e_{r}}(a>0$, it is a radius $)$, and
$R_{c}=\frac{\|\vec{v}\|^{2}}{36 a b^{2} t^{2}}=\frac{10}{9} a$

