

Physics exam 3 – Semester 1 February 23rd, 2023. Duration: 1 h

Transient regime of an RC circuit - correction

Part 1: Theoretical study (~ 9Pts, ~30 min)

1. The typical internal resistance of an LFG is 50Ω hence R_g can be neglected in front of R.

1.0 Pt

2. Using Kirchhoff voltage law and the constitutive law of capacitors we obtain:

2.0 Pt

1.0 Pt

$$u_c(t) + \tau \frac{du_c(t)}{dt} = E$$

with $\tau = (R + R_g)C$ or $\tau = RC$ neglecting R_g in front of R.

We obtain $\tau = 100 \, \text{ms}$

3. Solving the differential equation (homonogeneous +particular solution) <u>and</u> finding the integration 2.0 Pt constant from the continuity of u_c at intial time we obtain:

 $u_c(t) = E\left(1 - e^{-t/\tau}\right)$

with $i(t) = C \frac{du_c}{dt}$:

$$i(t) = \frac{E}{R} e^{-t/\tau}$$

- 4. Power received by the resistor: $P_R(t) = R i^2(t) = \frac{E^2}{R} e^{-2t/\tau}$ Energy received (i.e. dissipated) by the resistor: $E_R = \int_0^{t_1} P_R(t) dt = \frac{E^2}{R} \int_0^{t_1} e^{-2t/\tau} dt$ We obtain: $E_R = \frac{1}{2} C E^2 \left(1 - e^{-2t_1/\tau}\right)$
- 5. Power received by the capacitor: $P_C(t) = u_c(t) \cdot i(t) = \frac{E^2}{R} \left(e^{-t/\tau} e^{-2t/\tau} \right)$ 1.0 Pt Energy received by the capacitor: $E_C = \int_0^{t_1} P_C(t) \, dt = \frac{E^2}{R} \int_0^{t_1} \left(e^{-t/\tau} e^{-2t/\tau} \right) \, dt$ We obtain: $E_C = \frac{1}{2} C E^2 \left(1 + e^{-2t_1/\tau} 2e^{-t_1/\tau} \right)$
- 6. Power delivered by the e.m.f. : $P_E(t) = E \cdot i(t) = \frac{E^2}{R} e^{-t/\tau}$ 2.0 Pt Energy rdelivered by the e.m.f. : $E_E = \int_0^{t_1} P_E(t) \, dt = \frac{E^2}{R} \int_0^{t_1} e^{-t/\tau} \, dt$ We obtain: $E_E = C E^2 \left(1 e^{-t_1/\tau}\right)$

From the expression we obtain for E_E , E_R and E_C we can see that:

$$E_E = E_R + E_C$$

which confirms the energy balance.

Part 2: experimental study (~ 11Pts, ~30 min)

1. In DC steady-state capacitors are equivalent to open switches. Neglecting R_g the circuit is equivalent to a voltage divider where:

$$u_c(t=+\infty) = \frac{R_x}{R+R_x} E$$

2. We consider 2 capacitors (C_1 and C_2) in series, u(t) being the voltage difference across their terminals and i_1/i_2 the current crossing them (PSC convention). Using Kirchhoff current law:

$$i = i_1 + i_2$$

with $i_{1,2} = C_{1,2} \frac{du}{dt}$ we obtain:

$$i = (C_1 + C_2) \frac{du}{dt} \Leftrightarrow i = C_{eq} \frac{du}{dt}$$
 with $C_{eq} = C_1 + C_2$

From the equivalent scheme in transient regime given here we introduce i_c the current running into the equivalent capacitor $(C + C_x)$ and i_{R_x} the one crossing resistor R_x .

From Kirchhoff voltage law: $E = u_c(t) + Ri(t)$ (1)

From Kirchhoff current law: $i(t) = i_c(t) + i_{R_x}(t)$ (2)

with $i_c(t) = (C + C_x) \frac{du_c}{dt}$ and $i_{R_x}(t) = \frac{u_c(t)}{R_x}$ we obtain from (2): $i(t) = (C + C_x) \frac{du_c}{dt} + \frac{u_c(t)}{R_x}$ (3) Substituting (3) in (1) we obtain:

$$i(t) = (C + C_x)\frac{du_c}{dt} + \frac{u_c(t)}{R_x}$$
 (3)

$$\left(1 + \frac{R}{R_x}\right) u_c(t) + R(C + C_x) \frac{du_c}{dt} = E$$

$$\Leftrightarrow u_c(t) + \frac{R(C + C_x)}{1 + \frac{R}{R_x}} \frac{du_c}{dt} = \frac{E}{1 + \frac{R}{R_x}}$$

We finally have:

$$u_c(t) + \tau' \frac{du_c(t)}{dt} = \frac{E}{\alpha} (4)$$
 with $\alpha = \left(1 + \frac{R}{R_x}\right)$ and $\tau' = \frac{R}{1 + \frac{R}{R_x}} (C + C_x)$

Method 2: Using Circuit transformation

We may transform the circuit to an equilavent RC circuit using the successive transformation depicted on the right. We obtain $R_{eq} = \frac{RR_x}{R+R_x}$ and $E_{eq} = \frac{R_x}{R + R_x} E$. The differential equation governing u_c is then:

$$u_c(t) + R_{eq}(C + C_x) u_c(t) = E_{eq}$$

Substituting E_q and $R_e q$ by their corresponding expressions we retrieve the exact same result.

4. We obtain a very similar equation than in Part1-Q2 whose solution is:

$$u_c(t) = \frac{E}{\alpha} \left(1 - e^{-t/\tau'} \right)$$
(5)

From equation (4) or (5) we can deduce that u_c

tends to $\frac{E}{\alpha}$ in steady-state. <u>Bonus:</u> $\frac{E}{\alpha}$ corresponds to the steady-state value identified in Q1.

From the graph we extract $\boxed{\frac{E}{\alpha} \simeq 9 \text{ V}}$. τ' can be then extracted knowing u_c is worth

 $\sim 0.63 \frac{E}{\alpha} \simeq 5.7 \, \text{V}$ as $t = \tau'$. We obtain $\tau' = 90 \, \text{ms}$. C_x can be neglected in front of C meaning that $\tau' = \frac{R}{1 + \frac{R}{R_x}} C$. Knowing τ' , C and R we can deduce

$$R_x: \frac{R}{R_x = \frac{R}{\frac{RC}{\tau'} - 1}} = 900 \,\mathrm{k}\Omega$$

 \overline{R} and R_x bring $\alpha \simeq 1.11$

Finally, with the extracted value of $\frac{E}{\alpha}$ we obtain $E \simeq 10.0 \,\mathrm{V}$

4.0 Pt +1.0 **Bonus**