Exercise 1 : Ironing 8 pts +0.5 pts bonus

Elements of correction, expected items and grading scale

1- Meaning o the different physical quantities

2000-2400W corresponds to the power used/received by the iron, noted P
$\operatorname{dim}(P)=\operatorname{dim}($ Energie $) \mathrm{T}^{-1}$ and dim (Energie $)=\mathrm{ML}^{2} \mathrm{~T}^{-2}$ (kinetic energy for instance)
$\operatorname{dim}(P)=\mathrm{ML}^{2} \mathrm{~T}^{-3}$
220-240V corresponds to the voltage difference accros the iron noted U $\operatorname{dim}(U)=\operatorname{dim}(P))^{-1}(P=$ UI law with I the electric current intensity through the iron)
$\operatorname{dim}(U)=M L^{2} T^{-3} I^{-1}$
2- Physical and energy mechnisms at play
The iron is made of a heating resistor (R). When plugged in, an electric current flows through the iron and energy is dissipated by Joule's effect.

An iron is a device that transforms electric energy into thermal energy
3- Electric current intensity
$P=U I$
With the datasheet information:
$P=\frac{P_{\text {max }}+P_{\text {min }}}{2}$ and $\Delta P=\frac{P_{\text {max }}-P_{\text {min }}}{2}$
$\mathrm{P}=2.2 \pm 0.2 \mathrm{~kW}$
$U=\frac{U_{\max }+U_{\min }}{2}$ and $\Delta U=\frac{U_{\max }-U_{\text {min }}}{2}$
$\mathrm{U}=230 \pm 10 \mathrm{~V}$
$I_{\max }=\frac{P_{\max }}{U_{\min }}=\frac{2400}{220}=10.909 \mathrm{~A}$
$I_{\text {min }}=\frac{P_{\text {min }}}{U_{\max }}=\frac{2000}{240}=8.333 \mathrm{~A}$
$I=\frac{I_{\max }+I_{\min }}{2}=9.6212 A \quad \Delta I=\frac{I_{\max }-I_{\min }}{2}=1.2878 \mathrm{~A}$
$\mathrm{I}=9.6 \pm 1.3 \mathrm{~A}$
(give the points if correct result with differential method)
$\mathrm{R}=\mathrm{U} / \mathrm{I}$
Rmax=Umax/Imin=28.801152 Ω
Rmin=Umin/Imax=20.1668 Ω
DR=4.31716 Ω
$\mathrm{R}=24.48399 \Omega$
$R=24 \pm 5 \Omega$
4- Consumed energy
Consumed/received energy $\mathrm{Ec}=\mathrm{P}^{*} \mathrm{t}$ with t the duration of use
Hypothesis: no uncertainty on t or choose a realistic uncertainty, for instance $\Delta t=1 \mathrm{~min}$
$E c_{\text {max }}=P_{\text {max }} * t_{\text {max }}$ and $E c_{\text {min }}=P_{\text {min }} * t_{\text {min }}$
If $\Delta t=60 s$
$E c_{\max }=5184000 \mathrm{~J}$ and $E c_{\min }=4080000 \mathrm{~J} \Rightarrow E c=4,63 \pm 0,56 \mathrm{MJ}$
if $\Delta t=0 s$
$E c_{\max }=5040000 \mathrm{~J}$ and $E c_{\min }=4200000 \mathrm{~J} \Rightarrow \mathrm{Ec}=4,62 \pm 0,42 \mathrm{MJ}$
5- Cost for a 35 min use
Price $0.10 € / \mathrm{kWh}$ (2020 cost...)
$=0.1 /(1000 * 3600) € / \mathrm{J}$
Cost max $=0.144 €$
Cost max $=0.111 €$
Cost $=0.13 \pm 0.02 €$
0.5 pt for defining the quantities and their notation 0.5 pt for the dimension of P and U
0.5 pt for justifying the
dimensions

Expected words :
Resistor/resistance, Joule's
effect, electric energy, thermal energy

Bonus : 0.5 for a simplified
Bonus
eklectric scheme
0.5 pt for literal expressions of
$P, \Delta P, U, \Delta U$
0.5 pt for numerical values of P and U with their uncertainties.
0.5 pt for literal expressions of
$I_{\text {max }}, I_{\text {min }}, I$ and ΔI
0.5 pt for the result with correct formatting (digits and uncertainties)e
0.5 Ohm's law
0.5 final result (right unit,
digits...)
0.5 literal expression of Ec 0.5 hypothesis on the
0.5 numerical value of Ec with uncertainty, in proper format (accept a result with 1 significant digit)
0.5 for unit conversion
0.5 for final result and uncertainty

\begin{tabular}{|c|c|}
\hline Exercise 2: Diode \& / 27+6 \\
\hline \begin{tabular}{l}
1. Diode I-V curve in passive sign convention : see appendix \\
for \(u \leqslant e_{S}: I=0\) \\
for \(u \geqslant e_{S}: I=-\frac{e_{S}}{r_{d}}+\frac{U}{r_{d}}=(-0.3 \mathrm{~A})+\left(0.2 \Omega^{-1}\right) \times U\). \\
Plot : one can use (\(U=0, I=0\)), \(\left(U=e_{S}=1.5 \mathrm{~V}, I=0\right)\) and \(\left(U=1.75 \mathrm{~V}, I=5.10^{-2} \mathrm{~A}\right)\) (accept other points, but -0.5 if 2 pts too close) \\
Passive dipole, polarized, non linear (or piecewise linear)
\end{tabular} \& \begin{tabular}{l}
0.5 convention 0.5 \\
2 for plot with 3 well chosen points
\end{tabular} \\
\hline 2.a. Circuit scheme with all information (see. end of correction) \& 1 \\
\hline \begin{tabular}{l}
2.b. I-V curve of the generator : using two points with \(U=E_{g}-R_{g} I\) in Active sign convention : for instance \(\left(U_{1}=1.25 \mathrm{~V}, I_{1}=3.5 \cdot 10^{-2} \mathrm{~A}\right)\) and \(\left(U_{2}=1.75 \mathrm{~V}, I_{2}=2 \cdot 5 \cdot 10^{-2} \mathrm{~A}\right)\). \\
Operating point : reading the intersection of the two curves \(U_{P}=1.60 \mathrm{~V}+\frac{1.35 \mathrm{~cm}}{18.8 \mathrm{~cm}} \times 5.10^{-1} \mathrm{~V}\) and \(I_{P}=2.10^{-2} \mathrm{~A}+\frac{1.55 \mathrm{~cm}}{10.1 \mathrm{~cm}} \times 5.10^{-2} \mathrm{~A}\). Hence \(P\left(U_{P}=1.636 \mathrm{~V}, I_{P}=2.77 .10^{-2} \mathrm{~A}\right)\) (accept any coherent value; significant digits decided after uncertainty calculation). Details about scale use expected, remove points otherwise
\end{tabular} \& 0.5 conv.+1 1.5 (with two points clearly shown) \\
\hline \[
\begin{aligned}
\& \text { Overall uncertainty (detailed redaction below) }: U=(1.636 \pm 0.009) \mathrm{V} \text { and } \\
\& I=(2.8 \pm 0.2) .10^{-2} \mathrm{~A}
\end{aligned}
\] \& matting \\
\hline \begin{tabular}{l}
Error sources and associated uncertainties : For instance (accept other organization if plausible; bonus for other relevant sources) \\
- matter and medium : negligible \\
- "man" (operator) : \\
care while doing the projections and plots (line thickness, points positioning) : uncertainty on the intersection estimated as \(\pm 2\) line widths. \\
Perpendicularity of the axes projections : uncertainty estimated as \(\pm 2\) line widths \\
- means and method: 2 possible ways for reading (U,I) on the axes.
\end{tabular} \& 0.5 \\
\hline \begin{tabular}{l}
either direct reading with the axes graduation : half a graduation uncertainty so \(\left(\Delta I=0.25 .10^{-2} \mathrm{~A}\right.\) and \(\Delta U=0.013 \mathrm{~V}-2\) significant digits max. \\
Given the graduations (large zoom), this uncertainty accounts for all sources of uncertainties (including operator ones)
\end{tabular} \& \[
\begin{array}{r}
0.5 \\
0.5+1(-0.5 \text { if } \\
\Delta U \text { with } 3 \\
\text { digits } \\
\text { bonus } 1
\end{array}
\] \\
\hline \begin{tabular}{l}
or reading using a 20 cm ruler and using a scale : in place of the \(2.5+\) bonus1 above : \\
With the total error on the projected position of the operating point of \(\pm 4\) line widths : \\
We estimate 1 line width \(\simeq 0.5 \mathrm{~mm}\) \\
which gives, using the intensity and voltage scales: \\
4 line widths \(\simeq 4 \frac{0.5 \mathrm{~mm}}{18.8 \mathrm{~cm}} 0.5 \mathrm{~V} \leqslant 6.10^{-3} \mathrm{~V}\), \\
and 4 line widths \(\simeq 4 \frac{0.5 \mathrm{~mm}}{10.1 \mathrm{~cm}} 5.10^{-2} \mathrm{~A} \leqslant 10^{-3} \mathrm{~A}\) \\
We must add the half a graduation uncertainty per reading, that is 1 graduation (\(=1 \mathrm{~mm}\)) per distance measured : \\
for each reading on the axis \\
for the scale measure of each axis
\end{tabular} \& 0.5
1

0.5
bonus 0.5

\hline
\end{tabular}

We get the operating point as (accept any coherent value) :
$U_{P, \text { max }}=1.60 \mathrm{~V}+\frac{1.45 \mathrm{~cm}}{18.7 \mathrm{~cm}} \times 0.5 \mathrm{~V}+6.10^{-3} \mathrm{~V}=1.645 \mathrm{~V}$ (literal relation no required)
bonus 1
$U_{P, \text { min }}=1.60 \mathrm{~V}+\frac{1.25 \mathrm{~cm}}{18.9 \mathrm{~cm}} \times 0.5 \mathrm{~V}-6.10^{-3} \mathrm{~V}=1.627 \mathrm{~V}$
We get $\Delta U=\frac{U_{\max }-U_{\text {min }}}{2}=9.10^{-3} \mathrm{~V}$
$I_{P, \max }=2.10^{-2} \mathrm{~A}+\frac{1.65 \mathrm{~cm}}{10.0 \mathrm{~cm}} \times 5.10^{-2} \mathrm{~A}+10^{-3} \mathrm{~A}=2.925 .10^{-2} \mathrm{~A}$
bonus 0.5
bonus 1
$I_{P, \text { min }}=2.10^{-2} \mathrm{~A}+\frac{1,45 \mathrm{~cm}}{10.2 \mathrm{~cm}} \times 5.10^{-2} \mathrm{~A}-10^{-3} \mathrm{~A}=2,611.10^{-2} \mathrm{~A}$
and $\Delta I=\frac{I_{\max }-I_{\min }}{2}=0.16 \cdot 10^{-2} \mathrm{~A}$
Comment : The uncertainty due to the reading with a scale is 2 times smaller than with the line width
2.c. Kirchhoff's voltage law
$\Rightarrow I=\frac{E_{g}-e_{s}}{r_{d}+R_{g}}$ and $U=e_{S}+\left(E-e_{S}\right) \frac{r_{d}}{r_{d}+R_{g}}=\frac{e_{S} R_{g}+E r_{d}}{r_{d}+R_{g}}$.
Numerical application : $U=1.636 \mathrm{~V}$ and $I=2.7 .10^{-2} \mathrm{~A}$. Remark : quantities E, e_{s}, R_{g} and r_{d} are known without uncertainty, so the number of significant digits is not defined.
$0.5+0.5+$ bonus
0.5 comment on digits
The values computed are in the uncertainty range obtained by graphical method.
bonus 0.5
bonus 0.5
already graded
bonus 0.5
3.

Using the I-V curve of the diode, we get $U(I=10 \mathrm{~mA})=U_{d}=1.55 \mathrm{~V}$
Same uncertainty sources - accept results consistent with the previous question :
half-graduation $\Delta U=0.013 \mathrm{~V}$
or ± 4 line widths $\simeq \Delta U \leqslant 0.01 \mathrm{~V}$
hence $U_{d}=1.55 \pm 0.02 \mathrm{~V}$ or $\pm 0.01 \mathrm{~V}$ respectively (keeping only one digit for ΔU_{d} for instance)
4. $E_{g}-U_{d}=\left(R_{p}+R_{g}\right) I_{d} \Leftrightarrow R_{p}=\frac{E_{g}-U_{d}}{I_{d}}-R_{g}$
$R_{p, \text { max }}=\frac{E_{g}-U_{d, \text { min }}}{I_{d}}-R_{g}$ format
$R_{p, \text { min }}=\frac{E_{g}-U_{d, \text { max }}}{I_{d}}-R_{g}$
$\Delta R_{p}=\frac{1}{2} \frac{U_{d, \max }-U_{d, \text { min }}}{I_{d}}=\frac{\Delta U_{d}}{I_{d}}=\frac{0.01 \mathrm{~V}}{10 \mathrm{~mA}}=1 . \Omega$
and finally $R_{P}=(95 \pm 1) \Omega$
1 Num
App+bonus0.5
literal
expression
with ΔU_{d}
0.5 only format

Remark : knowing all elements without uncertainty, we could deduce R_{p} directly : $R_{p}=\frac{E_{g}-e_{s}}{I_{d}}-r_{d}-R_{g}$. Does not follow the question (with "Deduce") and does not provide an uncertainty : give points on R_{P} only

Figure 1 - Appendix 1

(a) Equivalent circuit for questions 1 and 2

(b) Equivalent circuit for questions 3 and 4

