

Exercise 1 : Ironing 8 pts +0.5pts bonus		
Elements of correction, expected items and grading scale		
1- Meaning o the different physical quantities 2000-2400W corresponds to the power used/received by the iron, noted P dim (P) = dim(Energie)T ⁻¹ and dim (Energie) = ML^2T^{-2} (kinetic energy for instance) dim(P) = ML^2T^{-3} 220-240V corresponds to the voltage difference accros the iron noted U dim (U) = dim(P)I^{-1} (P= UI law with I the electric current intensity through the iron) dim(U) = $ML^2T^{-3}I^{-1}$	0.5 pt for defining the quantities and their notation 0.5 pt for the dimension of P and U 0.5 pt for justifying the dimensions	/1.5
 Physical and energy mechnisms at play The iron is made of a heating resistor (R). When plugged in, an electric current flows through the iron and energy is dissipated by Joule's effect. 	Expected words : Resistor/resistance, Joule's effect, electric energy, thermal energy	/1
An iron is a device that transforms electric energy into thermal energy	Bonus : 0.5 for a simplified eklectric scheme	Bonus /0.5
3- Electric current intensity P = UI With the datasheet information: $P = \frac{P_{max} + P_{min}}{2}$ and $\Delta P = \frac{P_{max} - P_{min}}{2}$ $P = 2.2 \pm 0.2 \text{ kW}$ $U = \frac{U_{max} + U_{min}}{2}$ and $\Delta U = \frac{U_{max} - U_{min}}{2}$ U= 230±10 V $I_{max} = \frac{P_{max}}{U_{min}} = \frac{2400}{220} = 10.909A$ $I_{min} = \frac{P_{min}}{U_{max}} = \frac{2000}{240} = 8.333A$ $I = \frac{I_{max} + I_{min}}{2} = 9.6212A$ $\Delta I = \frac{I_{max} - I_{min}}{2} = 1.2878A$ I= 9.6±1.3 A (give the points if correct result with differential method) R=U/I Rmax=Umax/Imin=28.801152 Ω Rmin=Umin/Imax=20.1668 Ω DR=4.31716 Ω R=24.48399 Ω R= 24±5 Ω	 0.5 pt for literal expressions of P, ΔP, U, ΔU 0.5 pt for numerical values of P and U with their uncertainties. 0.5 pt for literal expressions of Imax, Imin, I and ΔI 0.5 pt for the result with correct formatting (digits and uncertainties)e 0.5 Ohm's law 0.5 final result (right unit, digits) 	/3
4- Consumed energy Consumed/received energy Ec = P*t with t the duration <u>of use</u> <u>Hypothesis</u> : no uncertainty on t or choose a realistic uncertainty, for instance $\Delta t = 1 \min$ $Ec_{max} = P_{max} * t_{max}$ and $Ec_{min} = P_{min} * t_{min}$ If $\Delta t = 60s$ $Ec_{max} = 5184000J$ and $Ec_{min} = 4080000J$ => Ec = 4,63±0,56 MJ if $\Delta t = 0s$ $Ec_{max} = 5040000J$ and $Ec_{min} = 4200000J$ => Ec = 4,62±0,42MJ	0.5 literal expression of Ec 0.5 hypothesis on the uncertainty on t 0.5 numerical value of Ec with uncertainty , in proper format (accept a result with 1 significant digit)	/1.5
5- Cost for a 35 min use Price $0.10 \notin kWh$ (2020 cost) = $0.1/(1000*3600) \notin J$ Cost max = $0.144 \notin$ Cost max = $0.111 \notin$ Cost = $0.13\pm0.02 \notin$	0.5 for unit conversion 0.5 for final result and uncertainty	/1

Exercise 2 : Diode	/ 27+6
1. Diode I-V curve in passive sign convention : see appendix	0.5 convention
for $u \le e_S : I = 0$	0.5
for $u \ge e_S$: $I = -\frac{e_S}{r_d} + \frac{U}{r_d} = (-0.3\text{A}) + (0.2\Omega^{-1}) \times U.$	1
Plot : one can use $(U = 0, I = 0)$, $(U = e_S = 1.5V, I = 0)$ and $(U = 1.75V, I = 5.10^{-2}A)$ (accept	2 for plot with 3
other points, but -0.5 if 2 pts too close)	well chosen
Passive dipole, polarized, non linear (or piecewise linear)	points 1
2.a. Circuit scheme with all information (see. end of correction)	1
2.b. I-V curve of the generator : using two points with $U = E_g - R_g I$ in Active sign convention :	0.5 conv.+1
for instance $(U_1 = 1.25V, I_1 = 3.5.10^{-2}A)$ and $(U_2 = 1.75V, I_2 = 2.5.10^{-2}A)$.	1.5 (with two points clearly
Operating point · reading the intersection of the two curves	shown)
$U_{L} = 1 \text{ cov} + \frac{1.35 \text{ cm}}{1.35 \text{ cm}} = 5 \text{ 10}^{-1} \text{ V}$ and $U_{L} = -2 \text{ 10}^{-2} \text{ A} + \frac{1.55 \text{ cm}}{1.55 \text{ cm}} = 5 \text{ 10}^{-2} \text{ A}$	
$O_P = 1.00V + \frac{1}{18.8 \text{cm}} \times 3.10$ V and $I_P = 2.10$ A + $\frac{1}{10.1 \text{cm}} \times 3.10$ A. Hence	1+1
$P(U_P = 1.636V, I_P = 2.77.10^{-2}A)$ (accept any coherent value; significant digits decided	
after uncertainty calculation). Details about scale use expected, remove points otherwise	
Overall uncertainty (detailed redaction below) : $U = (1.636 \pm 0.009)V$ and $L_{10}(2.0 \pm 0.01) \pm 10^{-2}A$	1 (formatting
$I = (2.8 \pm 0.2) \cdot 10^{-4} \text{A}$	only)
cible, honus for other relevant courses)	
- matter and medium : negligible	0.5
- "man" (operator) :	0.5
care while doing the projections and plots (line thickness, points positioning) · uncertainty	1
on the intersection estimated as ± 2 line widths.	-
Perpendicularity of the axes projections : uncertainty estimated as ± 2 line widths	1
- means and method : 2 possible ways for reading (U,I) on the axes.	
either direct reading with the axes graduation : half a graduation uncertainty	0.5
	0.5+1(-0.5 if
so $(\Delta I = 0.25.10^{-2} \text{A} \text{ and } \Delta U = 0.013 \text{V} - 2 \text{ significant digits max.}$	ΔU with 3
	digits
Given the graduations (large zoom), this uncertainty accounts for all sources of uncertain-	bonus 1
ties (including operator ones)	
or reading using a 20cm ruler and using a scale : in place of the 2.5+bonus1 above :	
with the total error on the projected position of the operating point of ± 4 line widths :	0.5
which gives using the intensity and voltage scales :	0.5
0.5 mm $_{$	
4 line widths $\simeq 4 \frac{0.5 \text{ V}}{18.8 \text{ cm}} = 0.5 \text{ V} \le 6.10^{-3} \text{ V},$	1
and 4 line widths $\approx 4 \frac{0.5 \text{mm}}{10.1 \text{cm}} 5.10^{-2} \text{A} \le 10^{-3} \text{A}$	
We must add the half a graduation uncertainty per reading, that is 1 graduation (= 1mm)	
per distance measured :	
for each reading on the axis	0.5
for the scale measure of each axis	bonus 0.5

We get the operating point as (accept any coherent value) :	
$U_{P,max} = 1.60\text{V} + \frac{1.45\text{cm}}{10.7\text{cm}} \times 0.5\text{V} + 6.10^{-3}\text{V} = 1.645\text{V}$ (literal relation no required)	bonus 1
$U_{P,min} = 1.60\text{V} + \frac{1.25\text{Cm}}{1.25\text{Cm}} \times 0.5\text{V} - 6.10^{-3}\text{V} = 1.627\text{V}$	bonus 0.5
We get $\Delta U = \frac{U_{max}^{18.9 \text{cm}} - U_{min}}{2} = 9.10^{-3} \text{V}$	bonus 0.5
$I_{P,max} = 2.10^{-2} \text{A} + \frac{1.65 \text{cm}}{10.2} \times 5.10^{-2} \text{A} + 10^{-3} \text{A} = 2.925.10^{-2} \text{A}$	bonus 1
$I_{P,min} = 2.10^{-2} \text{A} + \frac{1.45 \text{cm}}{1.22 \text{ cm}} \times 5.10^{-2} \text{A} - 10^{-3} \text{A} = 2,611.10^{-2} \text{A}$	bonus 0.5
and $\Delta I = \frac{I_{max} - I_{min}}{2} = 0.16.10^{-2} \text{A}$	bonus 0.5
2	already graded
Comment : The uncertainty due to the reading with a scale is 2 times smaller than with the line width	bonus 0.5
2.c. Kirchhoff's voltage law	1
$\Rightarrow I = \frac{E_g - e_s}{r_s + R} \text{ and } U = e_s + (E - e_s) \frac{r_d}{r_s + R} = \frac{e_s R_g + E r_d}{r_s + R}.$	2
$I_d + R_g$ $I_d + R_g$ $I_d + R_g$	0.5+0.5+ bonus
Numerical application : $U = 1.636$ V and $I = 2.7.10^{-2}$ A. Remark : quantities E, e_s , R_g and r_d	0.5 comment
are known without uncertainty, so the number of significant digits is not defined.	on digits
The values computed are in the uncertainty range obtained by graphical method.	0.5
3. Using the I-V curve of the diode, we get $U(I = 10 \text{ mA}) = U_d = 1.55 \text{ V}$	0.5
Same uncertainty sources – accept results consistent with the previous question :	
half-graduation $\Delta U = 0.013 V$ or ± 4 line widths $\simeq \Delta U \le 0.01 V$	0.5
hence $U_d = 1.55 \pm 0.02$ V or ± 0.01 V respectively (keeping only one digit for ΔU_d for instance)	0.5 oonly format
4. $E_g - U_d = (R_p + R_g)I_d \Leftrightarrow R_p = \frac{E_g - U_d}{I_d} - R_g$	2
$R_{n max} = \frac{E_g - U_{d,min}}{E_g} - R_g$	
$E_{\sigma} - U_{d max}$	1
$R_{p,min} = \frac{8}{I_d} - R_g$	
	1 Num
$\Delta D_{d,max} - U_{d,min} = \Delta U_d = 0.01 \text{V}$	App+bonus0.5 literal
$\Delta R_p = \frac{1}{2} \frac{I_d}{I_d} = \frac{I_d}{I_d} = \frac{1}{10 \text{mA}} = 1.52$	expression
	with ΔU_d
and finally $R_P = (95 \pm 1)\Omega$	0.5 only format
Remark : knowing all elements without uncertainty, we could deduce R_p directly :	
$R_p = \frac{L_g - e_s}{I_d} - r_d - R_g$. Does not follow the question (with "Deduce") and does not provide	
an uncertainty : give points on R_P only	

FIGURE 1 – Appendix 1

(a) Equivalent circuit for questions 1 and 2

(b) Equivalent circuit for questions 3 and 4