

Correction of the SCAN 1^{st} Physics exam – Semester 1 December 22^{nd} , 2023

Exercise 1: Transient regime (10 points + 1 bonus)

1. In the steady state, the coil behaves like a closed switch	
$\begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ R_{th} & \vdots & \vdots & \vdots \\ E_{th} & = \frac{R_{2}E}{R_{2}+R_{3}} \text{ and } R_{th} = \frac{R_{2}R_{3}}{R_{2}+R_{3}} \text{ Hence } I_{0} = \frac{E_{th}}{R_{1}+R_{th}} = \frac{R_{2}E}{R_{1}R_{2}+R_{2}R_{3}+R_{1}R_{3}}$	$\begin{array}{l} 0.5 (\text{equivalent} \\ \text{dipole}) \\ 0.5 (\text{circuit sim-} \\ \text{plification}) \\ 0.5 (I_0) \end{array}$
2a. Scheme with the different quantities:	
$(KVI) = (B + B)i + I^{di}$	1 (scheme) 0.5 (differential equation)
$(\mathbf{K}\mathbf{V}\mathbf{L}) E_{th} = (\mathbf{K}_1 + \mathbf{K}_{th})\mathbf{i} + L_{\overline{dt}}$	$0.5(i_n)$
26. Particular solution: $i_p(t) = \frac{e^{t}}{R_1 + R_{th}} = I_0$ General solution of the complementary homogeneous equation: $i_h(t) = Ae^{-\frac{t}{\tau}}$ Initial condition: continuity of the current flowing through the coil $i(O^+) = i(0^-) = 0$ gives $A = I_0$ and $i(t) = I_0(1 - e^{-\frac{t}{\tau}})$	$ \begin{array}{c} 0.5 (i_h) \\ 0.5 (initial \ condition) \\ 0.5 (i(t)) \end{array} $
$1_{p} = \frac{R_{2}E}{R_{1}R_{2}+R_{2}R_{3}+R_{1}R_{3}}$ 2c.	$egin{array}{c} 0.5 \ +0.5 ext{ if } au ext{ shown on} \ ext{the scheme} \end{array}$
2d. $i(t_{\infty}) = I_0$ This is logical since t_{∞} represents the steady state	+0.5
$3a.$ $(KVL) u_L = (R_1 + R_2)i' \text{ with } u_L = -L\frac{di'}{dt}$ $thus L\frac{di'}{dt} + (R_1 + R_2)i' = 0$	0.5 (scheme) 0.5 (KVL) 0.5 (differential equation)
3b. general solution: $i'(t) = Be^{-\frac{t}{\tau'}}$ initial condition: $i'(O^+) = i'(O^-) = I$ gives $B = I$ and $i'(t) = Ie^{-\frac{t}{\tau'}}$	0.5 (general solution) 0.5 (expression i')
$ \begin{array}{c} i'(t) & I_{p} = \frac{R_{2}E}{R_{1}R_{2} + R_{2}R_{3} + R_{1}R_{3}} \\ 3c. & 0 \end{array} $	0.25
3d. $W_{joule} = \int_0^\infty (R_1 + R_2) i'^2(t) dt = (R_1 + R_2) I^2 \int_0^\infty e^{-\frac{2t}{\tau'}} dt = \frac{1}{2} L I^2$	1.25
Energy stored in the coil at time $t = 0$: $W_0 = \frac{1}{2}LI^2$ Energy stored in the coil at time t_∞ : $W_\infty = 0$ The difference corresponds to the energy dissipated in the resistances, in agreement with question 3d	0.5

Exercise 2: Statics (~ 10 points)

Part 1 - Study of the static equilibrium (6 points)

1. system = rod OA	
Referential : Earth (assumed to be Galilean)	
List of external forces : weight \vec{W} , force \vec{F} exerted by the spring, reaction \vec{R}	
of the wall	
(a) R L \tilde{u}_y \tilde{u}_y \tilde{u}_x	1
$2 \vec{W} - m \vec{w}$	1 (forces)
$\begin{bmatrix} 2 & W &mga_y \\ \vec{E} & +b(I/(1 - cim\theta) - \ell)) \vec{z} \end{bmatrix}$	(0.5 if negative)
$\vec{P} = +\kappa(L(1 - sinb) - \ell_0)u_x$ $\vec{P} = P_x\vec{a} + P_x\vec{a}$	sign in the expres-
$R = R_x u_x + R_y u_y$	sion of \vec{F})
At equilibrium, $\mathcal{M}_O(W) + \mathcal{M}_O(F) + \mathcal{M}_O(R) = 0$	0.5 (expression
$\Leftrightarrow OG \times W + OA \times F + 0 = 0$	of the moments
Hence $-\frac{1}{2}mg.sin\theta + kL.cos\theta.(L(1 - sin\theta) - \ell_0) = 0$	around point O)
1 hat is to say $mg.tan\theta + 2kL.sin\theta = 2k(L - \ell_0)$	1 (final result)
3. Small angle approximation : $sin\theta \approx tan\theta \approx \theta$	
therefore $mg.\theta_{eq} + 2kL\theta_{eq} \approx 2k(L-\ell_0)$	1
$\theta_{eq} pprox rac{2k(L-\ell_0)}{mq+2kL}$	
Numerical application: $\theta_{eq} \approx 0.415 \ rad \approx 23.8^{\circ}$	
4. $\theta_{eq} = 0$ if $\ell_0 = L$ or if $k = 0$. This is expected for a regular pendulum.	0.5
5. We use $\vec{W} + \vec{F} + \vec{R} = \vec{0}$	1
we directly get $R_x = -k(L(1 - \sin(\theta) - \ell_0); R_y = mg \text{ and } R_z = 0$	L

Part 2 - Rod crossed by a current I immersed in a \vec{B} field (4 points)

1. Laplace force is exerted on the rod. It is equal to $\vec{F_{\ell}} = I.\vec{\ell} \times \vec{B}$ By considering it applies at the middle of the rod, we obtain	1
$F_{\ell} = -I.B_0.L(\cos\theta.\vec{u_x} + \sin\theta.\vec{u_y})$	
The new equilibrium is obtained for $\mathcal{M}_O(\vec{W}) + \mathcal{M}_O(\vec{F}) + \mathcal{M}_O(\vec{R}) + \mathcal{M}_O(\vec{F}_\ell) = \vec{0}$ with $\mathcal{M}_O(\vec{F}_\ell) = -\frac{I.B_0.L^2}{2}.\vec{u}_z$ Hence at equilibrium, $-mg.sin\theta + kL.cos\theta.(L(1 - sin\theta) - \ell_0) - \frac{I.B_0.L^2}{2} = 0$ We want $\theta = 0$ thus $B_0 = \frac{2k.(L-\ell_0)}{I.L}$ Numerical application: $B_0 = 20$ T	2.5
3. $B_0 = 0$ for $\ell_0 = L$. This is logical since we already have $\theta_{eq} = 0$ (see Part 1 question 4)	0.5