

Group:

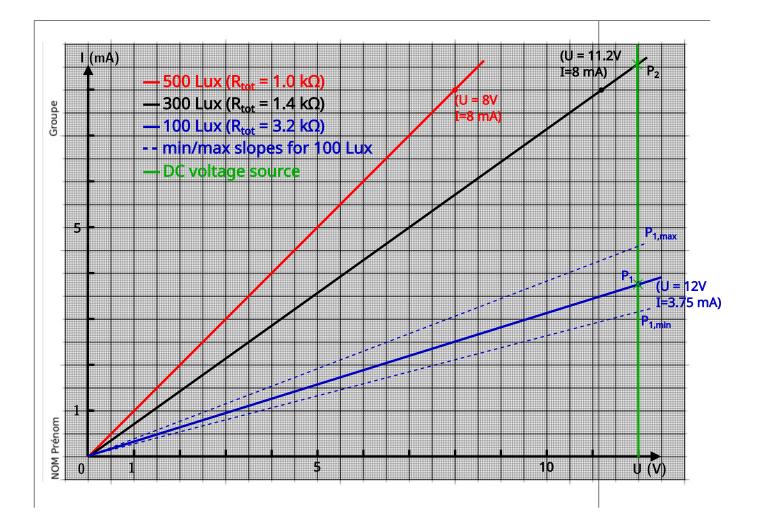
Name:

First Name :

Exercise 1 : Fluid flow (4 points)	4 / pts
1. We have : $\dim(F) = M.L.T^{-2}$	0.25
$\dim(S) = L^2$, $\dim(v) = L.T^{-1}$, $\dim(e) = L$	0.25
$\eta = \frac{F}{S} \frac{e}{v} \Rightarrow \dim(\eta) = M.L^{-1}.T^{-1}$	0.5
$2. \eta = 0.018 \text{ kg.m}^{-1}.\text{s}^{-1}$	0.25
$\eta = 0.018 \text{ kg.m}^{-1}.\text{s}^{-1} = 0.018 \times (1000 \text{g}) \times (100 \text{cm})^{-1} = 0.18 \text{ g.cm}^{-1}.\text{s}^{-1}$	0.5
3. We have : $\dim(\Delta P) = M.L^{-1}.T^{-2}$	0.25
$\dim(D) = \frac{\dim(P).L^4}{\dim(\eta).L} = L^3.T^{-1}$	0.5
It is thus a volume flow rate (volume per unit time)	0.5
4. Bounding :	
$D_{min} = 5.969 \times 10^{-5} \text{ m}^3.\text{s}^{-1}, D_{max} = 1.968 \times 10^{-4} \text{ m}^3.\text{s}^{-1}$	
$\Rightarrow D = (1.3 \pm 0.7) \times 10^{-4} \text{ m}^3.\text{s}^{-1}$	1 (or 0, no intermediate points)
$\begin{array}{l} Differential method (also accepted)\\ \frac{\Delta(D)}{D} = \frac{\Delta(\Delta P)}{\Delta P} + 4\frac{\Delta r}{r} + \frac{\Delta \eta}{\eta} + \frac{\Delta L}{L} = 0.594, D = \frac{\pi \Delta P r^4}{8\eta L} = 1.091 \times 10^{-4} \text{ m}^3.\text{s}^{-1}\\ \Rightarrow D = (1.1 \pm 0.7) \times 10^{-4} \text{ m}^3.\text{s}^{-1} \end{array}$	

Exer	cise 2 : Analy	sis of a lightir	g system with	a photoresistor (10 points + 1 bonus)	10+1/ pts
1. Photor	resistor and	uncertainty :	From the gra	ph, we read the minimum and maximum	
resistances for each light intensity value to deduce the value of R_{LDR} and its uncertainty :					
L (lux)	$R_{LDR}^{min}(k\Omega)$	$R_{LDR}^{max}(k\Omega)$	$R_{LDR}(k\Omega)$		1.5
100	2.6	3.6	(3.1 ± 0.5)		
300	0.8	1.8	(1.3 ± 0.5)		
500	0.4	1.4	(0.9 ± 0.5)		
2. Resista	nce of the lig	ghting system	and uncerta	inties:	
The light	ing system is	composed o	f the resistan	ce of the lamp $(R_L = (100 \pm 2) \Omega)$ in series	
with the p	with the photoresistor (R_{LDR}) . Its total resistance is therefore :				
$R_{tot} = R_L + R_{LDR}$					
We calculate the minimum (resp. maximum) value of the lighting system resistance based					
on the extreme values of R_L and R_{LDR} :					
		<u>F</u> F	Sh ·		
	R	$R_{tot}^{min} = R_L^{min} +$	R_{LDR}^{min} and	$R_{tot}^{max} = R_L^{max} + R_{LDR}^{max}$	
The table	below detail	s calculations	for each light	tintensity	
				e average value (R_{tot}^{avg}), and the uncertainty	1 Easte (0 E as an
				arily truncated after the 3rd decimal. Only	1.5pts (0.5 per
the final i	value (last col	lumn) rounde	ed to the neare	est 0.1 kilo-ohm is considered.	value)

				· · · ·	1	
(lux) $R_{tot}^{min}(k\Omega)$		$R_{tot}^{avg}(k\Omega)$	$\Delta R_{tot}(k\Omega)$	$R_{tot}(k\Omega)$		
$\approx 2.698.$		≈ 3.200	≈ 0.502	(3.2 ± 0.6)		
$\approx 0.898.$		≈ 1.400	≈ 0.502	(1.4 ± 0.6)		
$\approx 0.498.$. ≈.502	≈ 1.000	≈ 0.502	(1.0 ± 0.6)		
culate the currentpere (the smalle(lux) $R_{tot} (k\Omega)$ 1003.23001.4	t for the maxim st division on th Current at 12 $3.75 \approx 3$ $8.57 \approx 8$	um voltage (e graph) : 2V (mA) .75 .55	• -	-	origin, we might earest 0.05 milli-	1.5pts (0.5 per curve)
500 1.0	12.00 ≈ 1				cs at 300 and 500	
ng the maximum 20 V and 8.00 V, graph on last pa Dperating points	n current of 8 m respectively (300 ge s: perating points,	A on the gra and 500 lux)	iph, rounded	to the neares	that allows rea- t 0.05 V. We find	
s line intersects	U =	= E - rI or vis $(I - 0)$ at	,			
ph (I =300 mA a ximum accessib	t U = 0 V). We the value (i.e., 8 m	hus calculate A), rounding	the voltage U it to the near	where the cu est graph divi	it lies outside the rrent reaches the sion (0.05V) : we the chosen graph	1.0pt (generator curve).
e three operating to 500 lux).note that the opm the graph, we(lux) $U(V)$ (00)12.030012.050012.0	read the follow I (<i>mA</i>) 3.75 8.57 out of range	<i>100 lux is the</i> ing values (ro	only one read	able from the	= (<i>U</i> ₃ , <i>I</i> ₃) (from graph	1.5pt
extreme values	thod as before, \vec{r} of R_{LDR} at 100 lo 1 <i>mA</i>) and (12 <i>V</i>	we determine 1x :	-		eristic at $12 V$ for	1.0pt (0.5pt per plot)
ves (dashed line						


One can question the relevance of the voltage uncertainty (smaller than the smallest graph division!), given possible reading errors or the precision of the plot. This is less critical for current values, which can be more accurately distinguished. To account for this, add at least one division to the final uncertainty (precision of plot and reading) : $P_{100lux} = ((12.00 \pm 0.05) V; (3.89 \pm 0.73) mA)$	+0.5pt bonus for accounting for plot and reading uncertainties
5. Power dissipation at 100 lux and uncertainty :	
With the operating point, we know the voltage across the lighting system and the current	
flowing through it.	
We calculate the product $P = U \cdot I$ (using the receiver convention) with the operating point	
We get :	
$P_{min} = U_{max} \cdot I_{min} \approx 37.92 mW$	10 nt
$P_{max} = U_{min} \cdot I_{max} \approx 55.32 mW$	1.0 pt
hence $P = (46.62 \pm 8.70) mW$	

Exercise 3 : Open problem : drone (6.5 points)	6.5 / pts
Problem self-appropriation :	
In order to determine the distance travelled at constant speed (according to text), we need	
to find the time of flight .	
We know the total available energy, we thus need to determine the consumed power in order	
to estimate the time of flight.	
We want the maximal distance , we thus need to determine which parameters play a role on	
the distance and maximize it.	
Fixed parameters are the available energy, the drone mass and length, the variable one is its	
flight speed. Only the velocity can be change to maximize the distance.	
Definition of physical quantities :	1.5
• <i>m</i> the drone mass, ℓ its length (to estimate)	
• <i>P</i> the consumed power during the flight, with $P = P_0 + P_1$, $P_0 = 100$ W the constant part and P_1 the variable part, function of <i>m</i> , ℓ and <i>v</i> (the drone speed)	
• <i>T</i> the time of flight and $D = v T$ the distance travelled	
• $E_b = 500$ Wh (given) and $\eta = 80\%$ the motor efficiency	
 part and P₁ the variable part, function of m, ℓ and v (the drone speed) T the time of flight and D = v T the distance travelled 	

Build a methodology to solve a problem (analyze) :	
We first need the expression of P_1 . For that we can rely on dimensional analysis, since we	
know that $P_1 = f(m, \ell, \nu)$	
We will then estimate <i>T</i> so that $P \times T = \eta E_b$ and finally <i>D</i> using	
$D = vT = v\frac{\eta E_b}{P}$	
Hypothesis :	1
• constant flight speed (given by the text) : we neglect the influence of take off, accele- ration, deceleration and landing on energy consumption. This assumption is justified if the flight duration is long compared to these phases.	
• the dimensionless coefficient in P_1 will be considered to be equal to 1, which can be a strong limitation	
Use the methodology :	
Dimensional analysis : we set $P_1 = \alpha m^a \ell^b v^c$. dim $(P_1) = M L^2 T^{-3} = [\dim(m)]^a [\dim(\ell)]^b [\dim(v)]^c = M^a L^{b+c} T^{-c}$	
$\begin{cases} a = 1 \\ b + c = 2 \\ -c = -3 \end{cases} \begin{cases} a = 1 \\ b = -1 \\ c = 3 \end{cases} \Rightarrow P_1 = \frac{mv^3}{\ell}$	0.5
(assuming $\alpha = 1$)	
We get $T = \frac{\eta E_b}{P} = \frac{\eta E_b}{P_0 + mv^3/\ell}$	
and thus	0.5
$D = vT = \frac{\eta E_b}{P_0/v + mv^2/\ell}$	
The distance is maximal if the numerator is minimal, we are thus looking for a minimum of	
function $f(v) = \frac{P_0}{v} + \frac{m}{\ell} v^2$	0.5
$\frac{df}{dv} = 0$ gives an extremum for $v_0 = \left(\frac{\ell P_0}{2m}\right)^{1/3}$, which is indeed a minimum (one can look at the limites at 0 and $+\infty$) The maximal distance the drone can travel is thus	
$D_{\max} = \frac{\eta E_b}{\frac{3}{2} \left(2P_0^2 m/\ell \right)^{1/3}}$	1
Taking $m = 2 \text{ kg and } \ell = 30 \text{ cm}$, we get $D_{\text{max}} \approx 19 \text{ km} (18791 \text{ m})$	0.5
Have a critical look one the results (validate) :	
Discussion on assumptions and orders of magnitude	0.5
Communicate :	0.5
Evaluation of the overall clarity	0.5

