Thermodynamics

$\square 2 \square 2$	← Please enter you student number,
$\square 3 \ \square 3$	and write your name above.
$\square 4 \ \square 4$	NAME, First Name:
_5 _5 _5 _5 _5 _5 _5 _5	
□8 □8 □8 □8 □8 □8	
D .: 20 : . N	1 1 11 1 1 1 1 1 1 N 'C' 4/5C

Duration: 30 minutes - No document allowed and all calculators authorised - No wifi no 4/5G

A closed system has ten moles of an ideal gas of molar specific heat capacities $\overline{C}_{V_m} = 20.8 \, \mathrm{J/(mol~K)}$ and $\overline{C}_{P_m} = 29.1 \, \mathrm{J/(mol~K)}$. It is compressed in an adiabatic and reversible way from an initial pressure $P_i = 7 \, \mathrm{bar}$ to a final $P_f = 49$ bar. Knowing that the initial system volume is $V_i = 20$ L, give and demonstrate the literal expression of the final temperature \mathcal{T}_f as function of the given data. \Box Empty: \Box 0 \Box 1 \Box 2 \Box 2 \blacksquare 4

Reminder: $R = 8.314 \text{ J/(mol K)} + 1 \text{ bar} = 10^5 \text{ Pa} + 0.00 \text{ C}$

$R = 8.314 J/(\text{mol K}), 1 \text{par} = 10^{\circ} \text{Pa}, 0 \text{C} = 273 \text{K}.$	□Empty □0 □1 □2 □3 ■4
In a reversible adiabatic process, the relationship $PV^{\gamma}=c$	onst with $\gamma = \overline{C}_{P_m} / \overline{C}_{V_m}$
applies leading to $V_f = V_i \left(\frac{P_i}{P_f}\right)^{1/\gamma}$. Then, by applying the	ideal gas law in the final
$\sum_{V_i \in P_i} \langle \overline{C}_{V_m} / \overline{C}_{P_m} \rangle$	<mark>) .</mark>
state, we get $T_f = \frac{P_f V_f}{nR}$ leading to : $T_f = \frac{P_f V_i \left(\frac{P_i}{P_f}\right)^{(\overline{C}_{V_m}/\overline{C}_{P_m})}}{nR}$	(4 pts)

 $\mathbf{Q2}$ Give the numerical value of the final temperature T_f in K.

$\Box 0$	$\Box 1$	2	$\square 3$	$\Box 4$	$\Box 5$	$\Box 6$	$\Box 7$	$\square 8$	$\square 9$
$\Box 0$	$\Box 1$	$\square 2$	$\square 3$	$\Box 4$	$\Box 5$	$\Box 6$	$\Box 7$	<u>8</u>	9
$\Box 0$	□1	$\square 2$	3	$\Box 4$	□5	□6	$\Box 7$	□8	□9

Q3For open systems in adiabatic steady state flow processes, we have :

$$\Box \quad \Delta_s \dot{H} + \Delta_s \dot{E}_k^M + \Delta_s \dot{E}_p^M = \dot{Q} + \dot{W}_s \qquad \qquad \dot{Q} = 0 \qquad \qquad \Box \quad \Delta_s \dot{H} + \Delta_s \dot{E}_k^M + \Delta_s \dot{E}_p^M = \dot{Q} + \dot{W}_{pf} + \dot{W}_s$$

$$\Box \quad \Delta_s \dot{U} = \dot{Q} + \dot{W}_s \qquad \qquad \qquad \dot{W}_{pf} = 0$$

An ideal gas (closed system of n moles in a volume V with specific molar heat capacities \overline{C}_{V_m} and \overline{C}_{P_m}) undergoes an isochoric process from P_i , T_i to P_f , T_f . We have :

CORRECTION

A closed system with 0.86 kg of only liquid water at $T_i = 100^{\circ}\mathrm{C}$ and $P_i = 1.0\mathrm{atm}$ is first heated isobarically to entirely vaporise the water and then isochorically compressed to $P_f = 7.8\mathrm{atm}$. Give and demonstrate the literal expression of the heat exchanged during the entire process. Reminder: water latent heat: $L_{vap_w} = 2256\mathrm{kJ/kg}$ Water mass specific heat capacities: $\overline{C}_{\text{water}} = 4.184\mathrm{kJ/kg}$ K, $\overline{C}_{V_{\text{steam}}} = 1.405\mathrm{kJ/kg}$ K, $\overline{C}_{P_{\text{steam}}} = 1.867\mathrm{kJ/kg}$ K Data: $M_w = 18\mathrm{g/mol}$, $R = 8.314\mathrm{J/(mol\ K)}$, $1\mathrm{atm} = 101325\mathrm{Pa}$, $0^{\circ}\mathrm{C} = 273\mathrm{K}$, \square Empty $\square 0\square 1\square 2\square 3\square 4$
The entire process can be divided in two intermediate ones $(1. \rightarrow int. \text{ and } int. \rightarrow 2)$: the first with the isobaric water vaporisation and the second with the isochoric steam compression. For the first, $Q_1 = m_w L_{vap_w}$ whereas for the second $Q_2 = m_w \overline{C}_{V_w}(T_f - T_i)$ with $T_f = P_f V_f M_w / m_w R$ (ideal gas law) knowing that $V_f = V_{int} = \frac{m_w RT_i}{M_w P_i}$. So: $Q = m_w L_{vap_w} + m_w \overline{C}_{V_w}(\frac{P_f T_i}{P_i} - T_i)$ (4 pts)
$\mathbf{Q6}$ Give the numerical value of Q in MJ.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Q7 A turbine of a hydroelectric powerplant receives a constant flow rate ($\dot{V}_w = 34\mathrm{m}^3/\mathrm{min}$) of liquid water from a dam (altitude $h_{in} = 1083\mathrm{m}$, pressure $P_{in} = 4.5\mathrm{atm}$) and gives out the same flow rate to the downward valley (altitude $h_{out} = 513\mathrm{m}$, pressure $P_{out} = 1.0\mathrm{atm}$). Assuming an adiabatic reversible process, give and demonstrate the literal equation of the turbine shaft work \dot{W}_s as function of the given data. The liquid water density is $\rho_w = 10^3\mathrm{kg/m}^3$, $g = 9.81\mathrm{m/s}^2$ and $1\mathrm{atm} = 101325\mathrm{Pa}$.
For open systems in steady-state conditions, the first law is $\Delta_s \dot{H} + \Delta_s \dot{E}_k^M + \Delta_s \dot{E}_p^M = \dot{Q} + \dot{W}_s$. In this case, $\Delta_s \dot{E}_k^M = 0$ (static system), $\Delta_s \dot{E}_p^M = \rho_w \dot{V}_w g(h_{out} - h_{in})$ and, for reversible adiabatic ($\dot{Q} = 0$) processes of liquids, $\Delta_s \dot{H} = \int_{in}^{out} \dot{V}_w dP = \int_{in}^{out} \dot{V}_w dP$
$\dot{V}_w(P_{out}-P_{in})$ leading to : $\dot{W}_s=\dot{V}_w(P_{out}-P_{in})+\rho_w\dot{V}_wg(h_{out}-h_{in})$. (4 pts)
${f Q8}$ Give the numerical value of the shaft work \dot{W}_s in MW.
$ \square 0 \square 1 \square 2 \blacksquare 3 \square 4 \square 5 \square 6 \square 7 \square 8 \square 9$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$