Thermodynamics	MCQ March 21st 2025
0 0	← Please enter you student number, and write your name above. NAME, First Name:
Duration : 30 minutes - Lecture/tutorial booklet and personal	notes allowed, all calculators authorised - No wifi no 4/5G
Q1 A cyclist (isolated system) of $m=50\mathrm{kg}$ started a cliwith initial speed $v_{ini}=13\mathrm{km/h}$. Assuming that $v_{fin}=1$ energy variation during the climbing as function of the given Reminder : $g=9.81\mathrm{m/s^2},~R=8.314\mathrm{J/(mol~K)}.$	
Q2 Give the numerical value of internal energy variation	ΔU in kJ.
	1 \Box 5 \Box 6 \Box 7 \Box 8 \Box 9 1 \Box 5 \Box 6 \Box 7 \Box 8 \Box 9 at $T_{ini} = 100^{\circ}$ C and $P_{ini} = 1$ bar is cooled down to
$T_{fin} = 60$ °C. Considering that the final state is at thermody	vnamic equilibrium, what phases do you expect to find?
Liquid air Liquid water ${f Q4}$ A battery is an energy storage device that can be ch stored, this work is transformed in chemical work. Which en	Gaseous air Gaseous water arged or discharged through electric work. In order to be tergy chain represents correctly this process?
Battery Chemic	ttery cal energy discharge

Battery Mechanical energy

E_{k,micro}

Battery Chemical energy

E_{p,macro}

Battery recharge

Battery recharge Battery discharge

Battery discharge

A solar panel has a peak efficiency of 20%. However, its average efficiency over one day is 4.8%. How many hours over one day should the solar panel work at its peak efficiency to match its average efficiency?
Q6 What type of energy is the wind?
Macroscopic kinetic energy Microscopic kinetic energy Macroscopic potential energy Primary energy Useful energy Microscopic potential energy
Q7 In a closed system of constant volume $V=40\mathrm{m}^3$ there is humid air at $T_{ini}=90^\circ\mathrm{C}$, $P_{ini}=1.0\mathrm{bar}$ and $RH_{ini}=19\%$. The system temperature is decreased to $T_{fin}=76^\circ\mathrm{C}$. Demonstrate the literal expression of the final relative humidity RH_{fin} as function of the given data. Reminder: $P_w^*(90^\circ\mathrm{C})=0.7015\mathrm{bar}$, $P_w^*(76^\circ\mathrm{C})=0.3971\mathrm{bar}$ $R=8.314\mathrm{J/(mol~K)}$, $1\mathrm{bar}=10^5\mathrm{Pa}$, $0^\circ\mathrm{C}=273\mathrm{K}$.
Q8 Give the numerical value of RH_{eq} in %.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Q9 A closed vessel of $V=10\mathrm{L}$ at $T=32^\circ\mathrm{C}$ contains $n_{tot}=20\mathrm{mol}$ of an ideal gas mixture of O_2 and N_2 . Knowing that $P_{O_2}=19\mathrm{bar}$, demonstrate the literal expression of the N_2 molar fraction x_{N_2} as function of the given variables Reminder: $M_{N_2}=28\mathrm{g/mol},\ M_{O_2}=32\mathrm{g/mol},\ R=8.314\mathrm{J/(mol~K)},\ 1\mathrm{bar}=10^5\mathrm{Pa},\ 0^\circ\mathrm{C}=273\mathrm{K}.$ \[\text{Empty} \text{\text{0}} \text{1} \text{\text{2}} \text{\text{0}} \text{\text{2}} \text{\text{0}} \text{\text{2}} \text{\text{2}}
Q10 Give the numerical value of x_{N_2} in %.
$\square 0 \square 1 \square 2 \square 3 \square 4 \square 5 \square 6 \square 7 \square 8 \square 9$ $\square 0 \square 1 \square 2 \square 3 \square 4 \square 5 \square 6 \square 7 \square 8 \square 9$