Correction IE3 Chimie 2 du 25 janvier 2017

Exercice d'application directe du cours [8 points]

Question	Éléments de réponses				
1.	a) Réaction sens direct est exothermique : donc lorsque T augmente \rightarrow déplacement dans le <u>sens indirect</u> b) $K^{\circ}(T) = \frac{n_{NH_3}^2 \times V^2 \times P^{\circ 2}}{n_{N_2} \times n_{H_2}^3 \times (RT)^2} \rightarrow$ Ajout d'argon à V et T constants : <u>aucun effet (la pression totale augmente mais les valeurs de pression partielle des réactants non affectées)</u>				
	c) Ajout d'argon à P et T constantes : les pressions partielles des réactants sont donc toutes diminuées : déplacement dans le sens qui tend à augmenter le nombre de mole de gaz : sens indirect				
2.	Electroneutralité ou méthode de la réaction prépondérante : <u>pH = 3,44</u>				
3.	$AgCl(s) = Ag^{+}(aq) + Cl^{-}(aq)$				
	Si ajout de Cl⁻ : déplacement dans le sens indirect → <u>sel moins soluble</u> .				
4.	a)				
7.	T P = 1 atm T éb, eau Courbe d'ébullition Téb, méthanol				
	b)				
	Vapeur Teb, toluène Courbe de rosée Téb, eau toluène + vapeur Heau (1) + vapeur				
	Hétéroazéotrope Courbe d'ébullition eau ₍₁₎ + toluène ₍₁₎ × eau 1				

Problème : propriétés et applications de l'élément argent [32 points]

Question	Résultat				
Partie A	Utilisation de l'argent dans des alliages métalliques				
1.	La taille très proche des rayons atomiques peut laisser supposer une miscibilité totale due à un alliage de substitution. En effet, l'alliage cuivre-argent a une structure cubique à faces centrées où les atomes d'argent remplacent les atomes de cuivre aux huit sommets dans le motif initial cubique faces centrées.				
2.	1300 T*Ag 1200 1100 α(s) (1 phase) 1000 100				
3.	Courbes frontière : Courbe de démixtion (jusqu'à 1060K) ; Liquidus ; Solidus 6 domaines à identifier (<i>Cf ci-dessus</i>)				
4.	M_1 définit la miscibilité maximale (limite de miscibilité) du cuivre dans l'argent (solution $\alpha(s)$) et M_2 définit la miscibilité maximale de l'argent dans le cuivre (solution $\beta(s)$).				
5.	Points de variance nulle : Cu pur et Au pur Zone de variance nulle : palier eutectique (pas seulement E !!) Expression générale de la variance : $v = N + n - r - r' - phi$ (paramètres à redéfinir) Calcul pour les deux corps purs : $v = 1 + 1 - 0 - 0 - 2 = 0$ Calcul sur le palier eutectique : $v = 2 + 1 - 0 - 0 - 3 = 0$				
6.	a) A l'équilibre, le mélange est hétérogène : présence de deux phases solides. b) Application de la règle des moments chimiques : $S_{\alpha} \qquad M \qquad S_{\beta} \\ + \qquad + \qquad + \qquad + \\ 0.06 \qquad 0.20 \qquad 0.97$ $n_{S_{\beta}} = n_T \frac{\overline{S_{\alpha}M}}{S_{\alpha}S_{\beta}} \stackrel{A.N}{=} 100 \times \frac{0.20 - 0.06}{0.97 - 0.06} = 15,4 \text{mol.}$ Il y a donc $\underline{15.4 \text{ moles}}$ dans la solution solide β et $\underline{84.6 \text{ moles}}$ dans la solution solide α . c) $n_T = 100 \text{moles}$ dont 20 moles de Cuivre et 80 moles d'Argent.				
	Les masses initiales sont donc $m_{Cu} = 1270g$ et $m_{Ag} = 8632$ g, pour une masse totale de 9902 g.				

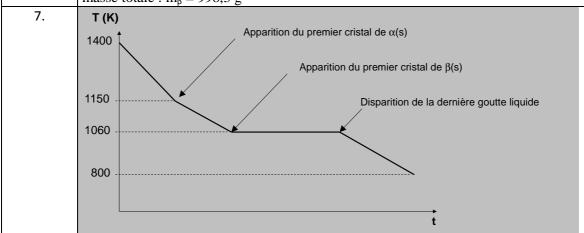
Composition de la solution solide α (n_{α} = 84,6 moles, x_{Cu} = 0,06) :

Sa teneur molaire est 6% de Cu et 94% d'Ag.

 $n_{Cu} = 5,08 \text{ mol donc } m_{Cu} = 322,6 \text{ g}$

 $n_{Ag} = 79,52 \text{ mol donc } m_{Ag} = 8580,2 \text{ g}$

masse totale : $m_{\alpha} = 8902.8 \text{ g}$


Composition de la solution solide β (n_{β} = 15,4 moles, x_{Cu} = 0,97) :

Sa teneur molaire est 97% de Cu et 3% d'Ag.

 $n_{Cu} = 14,94 \text{ mol donc } m_{Cu} = 948,7 \text{ g}$

 $n_{Ag} = 0.46 \text{ mol donc } m_{Ag} = 49.6 \text{ g}$

masse totale : $m_{\beta} = 998,3$ g

Partie B | Equilibres de dissolution des halogénures d'argent

I - Équilibre de dissolution des halogénures d'argent en solution aqueuse

8. $(1): AgBr(s) = Ag^{+}(aq) + Br^{-}(aq)$ (2): $AgCl(s) = Ag^{+}(aq) + Cl^{-}(aq)$

9. à 11.

	(1) : AgBr(s)	(2) : AgCl(s)
Δ _r H° en kJ.mol ⁻¹	84,1	63,9
Δ _r S° en J.mol ⁻¹ .K ⁻¹	47,9	33,0
Δ _r G° en kJ.mol ⁻¹	69,8	54,1
K _s	5,8×10 ⁻¹³	3,3×10 ⁻¹⁰
s en mol.L ⁻¹	7,6×10 ⁻⁷	1,8×10 ⁻⁵

AgCl(s) est le sel le plus soluble dans l'eau pure.

II – Approche expérimentale

12. Compartiment (1): Ag⁺/Ag(s)

$$E_1 = E^{\circ}(Ag^+Ag) + 0.06\log([Ag^+]_1)$$

13. Electrode en argent, baignant dans une solution de Ag+:

Compartiment (2) : Ag+/Ag(s)

$$[Ag^+]_2 = \frac{K_{s2}^{Exp}}{[Cl^-]_2}$$

$$E_2 = E^{\circ}(Ag^+Ag) + 0.06\log\left(\frac{K_{s2}^{Exp}}{[Cl^-]_2}\right)$$

14.
$$\left| \left(\frac{K_{s2}^{Exp}}{[Cl^{-}]_{2}} \right) \approx 10^{-8} \text{ donc } E_{2} < E_{1} \rightarrow (1) = \text{pôle (+) et (2)} = \text{pôle (-)} \right|$$

15.			(A - +1 [Cl-1)			
15.	$\Delta E = E(1)$	$-E(2) = 0.06 \log \left \frac{1}{2} \right $	$\frac{Ag}{K^{Exp}}$			
16.	$K^{Exp} = 3.8$	$\Delta E = E(1) - E(2) = 0.06 \log \left(\frac{[Ag^+]_1 [Cl^-]_2}{K_{s2}^{Exp}} \right)$ $K_{s2}^{Exp} = 3.8 \times 10^{-10}$				
			- 11 / - 2	1)		
17.	+	•	es théoriques de la partie I de 13% environ (bon ac	ccord).		
18.	Dispositif expérimental adapté					
	On garde les mêmes concentrations que précédemment car on est sûr que le précipité					
	+) moins soluble que AgCl(s)).			
Partie C		en photographie a	•			
	I – Étude de l'étape de révélation					
19.	$Q^{2-} = Q + 2 e$					
	$AgBr(s) + e - = Ag(s) + Br^{-}$					
20.			Br ⁻ (n = 2 électrons échangés)			
21.		•	edox, on peut utiliser :			
		. ΔE° = -R. T. In $K^{\circ}_{r\text{\'e}v\text{\'e}la}$	tion			
		tion = (n.F/RT) ΔE°				
	K° révélation = 2	2,41×10 ¹²				
	. ,	1	(0.05) 450			
			n/0.06) Δ E°, on trouve			
	K° _{révélation} = 2	1,58×10				
	Los 2 volou	rs sont high sûr accor	ntán c			
		rs sont bien sûr accep : K° _{révélation} > 10 ⁴ donc				
22.		n de la solution :	. reaction totale			
22.	Compositio	Espèce	Concentration en mol.L ⁻¹			
		Na ⁺	1,589			
		SO ₃ ²⁻	0,595			
		Br ⁻	0,049			
		H ₂ Q	1,135×10 ⁻¹			
		HO ⁻	0,35			
23.		110	0,55			
23.	OH ⁻ impose	e le pH : pH = - $log[H_30]$	O^{+}] = -log (K _e /[HO-]) = 13,5			
24.	A ce pH, $\frac{[Q^{2^-}]}{[HQ^-]} = \frac{Ka_2}{[H_3O^+]} = 100$ donc l'ion Q ²⁻ est la forme prédominante. H2Q est encore					
	A ce pH, –	$\frac{1}{HO^{-1}} = \frac{1}{[H_{*}O^{+}]} = 10$	00° donc l'ion Q° est la forme prédominante. H2Q es	st encore		
		taire (presque inexist				
	Formule de		ant)			
			ң н			
			ΘΘ			
			0—0			
)c==c(
			/ Н Н			
25.			$[Br^{-}]^{2} \times [O] (0.049)^{2} \times 10^{-15}$			
	Quotient de réaction initial : $Q_0 = \frac{[Br^-]^2 \times [Q]}{[Q^{2^-}] \times C^{\circ 2}} = \frac{(0.049)^2 \times 10^{-15}}{1.135 \times 10^{-1}} = 2.12 \times 10^{-17}$		$=\frac{1}{100^{2-1} \times C^{2}} = \frac{1135 \times 10^{-1}}{1135 \times 10^{-1}} = 2.12 \times 10^{-1}$			
			[2]/C 1,133/10			
26.	On constate	e que Q ₀ < K° _{révélation}				
		: 0) donc évolution da	ans le sens direct.			
	, , , ,	,				

Partie B	II. Étude d'un fixateur photographique			
27.	Bonus			
	-II S=S-O -II -II			
	O est plus électronégatif que S donc : Pour O neutre : récupère 2 électrons du S (car liaison double) : DO vaut [-II]. Pour les O chargés : récupère 1 électron du S (car liaison simple) + électron responsable de la charge = total de 2 électrons supplémentaires : le DO de chaque oxygène vaut [-II]. Pour les atomes de S, les DO sont différents du fait des liaisons formés : [0] pour celui lié à l'autre S, [+IV] pour le S central. Somme des DO = [-II] ce qui justifie la charge totale de l'ion			
28.	$Na_2S_2O_3$, $5H_2O(s) \xrightarrow{eau} 2 Na^+_{(aq)} + S_2O_3^{2-}_{(aq)} + 5 H_2O_{(I)}$.			
29.	Application de la loi de Hess à la dissolution: $\Delta_r H^0 = \sum_{i (produits)} v_i \Delta_f H^0 - \sum_{i (r\'eactifs)} v_i \Delta_f H^0$ $\text{AN}: \Delta_r H^0 = 2.(-239,66) + (-644,33) + 5.(-285,85) - (-2602) = +49,1 \text{kJ.mol}^{-1}$ (endothermique)			
30.	M = masse molaire de $Na_2S_2O_3$, $5H_2O$ = 248,2 g/mol. Comme la dissolution est totale, n_{sel} = m/M = 0,806 mol			
	ΔH = 0 car les échanges avec le milieu extérieur supposés nuls (dissolution rapide) Construction d'un cycle ou tout raisonnement sensé : $ n_{sel} \Delta_r H^0 + (m_{eau} + m_{sel}) \ Cp_{(eau)} (\theta_f - \theta_i) = 0 $			
	(on suppose Cp_{sel} = Cp_{eau} car solution forte dilution) $ \left(\frac{200}{248}\right) 49.1 \times 10^3 + (996 + 200) \times 4.18 \times \Delta\theta = 0 $ AN: θ_f - θ_e = -7,9°C et θ_e = 32,9 °C			
31.	Bonus			
	 Il est possible de remonter à la capacité thermique d'un calorimètre exprimé par μ en mesurant la température finalement observée dans un calo après injection d'une quantité d'énergie dans ce calo. Cette quantité d'énergie peut être injectée soit : par méthode physique (RI²t) en utilisant le principe d'un thermoplongeur de puissance connue par l'intermédiaire d'une réaction dont nous connaissons avec précision la chaleur échangée (exemple : dissolution d'un sel) par la méthode « classique » de mélange de volumes connus d'eau chaude et froide de température initiale connue. 			