

CHEMISTRY TEST # 1 (1h30)

The 2 exercises can be treated independently - All answers must be justified. No document allowed. – Only "College" type calculators are allowed.

For all numerical applications, take: $R=8.314 \text{ J.mol}^{-1}$. K^{-1} ; $T_0=273 \text{ K}=0^{\circ}\text{C}$; 1 bar = 10^5 Pa . All gases may be considered as ideal.

Exercise I – About the effects of an atmosphere too rich in CO_2 (≈ 10 points)

Data:

Self-ionization of water at 298K:

 $K_e = 10^{-14,0}$

Compound	Physical state	$\overline{\Delta_f H_{298}^0} (kJ.mol^{-1})$	$\overline{S_{298}^0} (J.K^{-1}.mol^{-1})$
CaCO ₃	solid	-1207.1	88.7
Ca ²⁺	Ion in solution	-542.8	- 53.1*
CO_3^{2-}	Ion in solution	-677.1	-56.9*

^{*} The partial molar entropies of the ions in solution are defined on an arbitrary scale in which the standard entropy of the H⁺_(aq) ions is taken equal to zero at all temperatures. As a result, they can be negative or positive. They reflect how the ions organize the water molecules around them in the solution.

The carbon dioxide (CO_2) of the atmosphere can dissolve in water, especially seawater. The resulting acidification affects the solubility of calcium carbonate (CaCO₃) in water, which could have a heavy impact on the survival of marine calcareous organisms in the seas and oceans, as the following calculations will show.

Let's consider the equilibrium of dissolution of calcium carbonate CaCO₃ in water, at temperature T and under pressure $P^{\circ} = 1$ bar:

$$CaCO_{3(s)} \rightleftarrows Ca^{2+}{}_{(aa)} + CO_{3}^{2-}{}_{(aa)}$$
 (R0)

- 1- Express the solubility product of CaCO₃, noted K_S (the standard concentration is noted $C^{\circ} = 1.00 \ mol. L^{-1}$).
- 2- Calculate the standard free enthalpy change $\Delta_R G_T^0$ for this reaction at T = 298K.
- 3- Calculate pK_S for this reaction at 298K (reminder: $pK_S = -log(K_S)$).
- 4- Compare the calculated value to the experimental one determined at 298K: $pK_S = 8,35$.

In the rest of the exercise, you will use the experimental value $pK_S = 8,35$.

The solubility of CaCO3 represents the maximum quantity (in mol) of this solid which can dissolve in one liter of water at temperature T.

5- Calculate the solubility of CaCO₃ in water at 298K, noted s, considering that the only species during the dissolution are $Ca^{2+}_{(aq)}$ and $CO_3^{2-}_{(aq)}$.

In reality, the following equilibria also occur in aqueous solution: $CO_{2(aq)} + 2H_2O \rightleftarrows HCO_{3(aq)}^- + H_3O^+_{(aq)} \qquad (R1) \quad \text{with at 298K:} \qquad pK_{a1} = 6.35$ $HCO_{3(aq)}^- + H_2O \rightleftarrows CO_{3(aq)}^{2-} + H_3O^+_{(aq)} \qquad (R2) \quad \text{with at 298K:} \qquad pK_{a2} = 10.4$

$$CO_{2(aq)} + 2H_2O \rightleftharpoons HCO_{3(aq)}^- + H_3O^+_{(aq)}$$

$$HCO_{3}^{-}(aq) + H_{2}O \rightleftharpoons CO_{3}^{2-}(aq) + H_{3}O^{+}(aq)$$

- 6- Justify qualitatively, in maximum two lines, that the dissolution of CO2 in the ocean leads to a decrease of pH.
- 7- Express the acidity constants K_{a1} and K_{a2} as a function of the concentration of the involved species and C° .

8- On a pH scale, indicate the domains of predominance of the following species $CO_{2(aq)}$, $HCO_{3(aq)}^{2}$ and $CO_{3(aq)}^{2}$, at 298K (species 1 is considered to be predominant compared to species 2 when their concentrations are such that : [1] > 10 × [2]).

Solubility of CaCO₃ is actually written:
$$s = [Ca^{2+}] = [CO_{2(aq)}] + [HCO_{3(aq)}] + [CO_{3(aq)}^{2-}] + [CO_{3(aq)}^{2-}]$$

9- Using the previous relation, show that the solubility s of CaCO₃ satisfies the following relation: $s^2 = [Ca^{2+}]^2 = A \times \left\{ \frac{[H_3o^+]^2}{B} + \frac{[H_3o^+]}{C} + 1 \right\}$ and express the A, B and C constants as a function of K_{a1} , K_{a2} , K_{S} and C° .

pH of seawater is included between 8.1 and 8.3.

- 10-In what chemical form is found CO_2 dissolved in the oceans? How can the expression of s^2 be thus simplified?
- 11-We then note s' the solubility of CaCO₃ in seawater, and $ps' = -log\left(\frac{s'}{c^o}\right)$. Determine the equation of variation of ps' as a function of the pH.
- 12-Calculate the solubility of $CaCO_3$ noted s' at pH = 8.2.
- 13-Comment on the effect of an increase in carbon dioxide concentration on calcareous organisms (mainly made of CaCO₃) in the ocean.

Exercise II – Formation of magnesium hydroxide

<u>Data</u>: Molar mass $(g.mol^{-1})$ Mg : 24.3 O : 16.0 H : 1.0

Questions 5 and following can be answered even if you have not answered questions 2 to 4

Magnesium oxide, a solid which formula is MgO, can react with gaseous water to form magnesium hydroxide, a solid which formula is $Mg(OH)_2$. The two solids are not miscible.

1- Write the chemical reaction of formation of Mg(OH)2.

2- Calculate the variance of the system at equilibrium. Comment on the found value.

In a vessel of constant volume V = 10.0 liters, a mass m = 49.57 g of magnesium oxide (whose volume is negligible in front of V) is introduced. After evacuation of the possible gases, the whole is brought to the temperature $\theta = 150 \, ^{\circ}$ C. A number of moles n of water is then introduced very gradually. At the temperature θ , the total pressure at equilibrium is $p_E = 1.00$ bar.

Moreover, the saturation vapor pressure of water at temperature θ is $p_S = 5.06$ bar.

3- Justify, in 2 lines, that no liquid water can be formed under these experimental conditions.

- 4- Show that there is no $Mg(OH)_2$ in the container if we introduce n = 0.222 moles of water.
- 5- What minimum quantity n_{min} of water must be introduced so that Mg(OH)₂ can be formed?
- 6- What is the maximum amount n_{max} of water that can be added while keeping the equilibrium state?
- 7- a. Plot the representative curve of P = f(n), for n varying from 0 to 2 moles. (To answer question 10 on the same graph: make sure that the pressure can go up to 5.5 bars, and the quantity of water n up to 4 moles).
 - b. Indicate clearly on the curve the numbers of moles of water n and the pressures at the limits of each domain.
 - c. Specify the compounds that are present in the various domains of the curve.
- 8- What is the quantity of material of each component (in number of moles) of the system when:
 - a. n = 1,00 mole of gaseous water is added?
 - b. n = 2,00 moles of gaseous water were added?
- 9- How much minimum water n_{min} ' must be added to observe the formation of liquid water?
- 10-Complete the representative curve P = f(n), for n varying from 0 to 4 moles.

(≈10 points)

void.