

CHEMISTRY TEST # 1 (1h30)

Any type of calculator allowed

The 2 exercises can be treated independently - All answers must be justified. For all numerical applications, take: R=8.314 J.mol⁻¹.K⁻¹; T (K) = $\Theta(^{\circ}C)$ + 273 K

1 atm = 760 Torr = 101325 Pa = 1,013 bar. P° = 1 bar

All gases may be considered as ideal

Exercise I – Thermochemistry – Magnesium oxide (7 points)

We want to determine the standard molar enthalpy of oxidation of solid magnesium $\Delta_{Oxy}H^{\circ}_{298}$.

- 1- Write the chemical reaction of oxidation of solid magnesium $Mg_{(s)}$ that results in the formation of magnesium oxide $MgO_{(s)}$.
 - 2- In order to determine the standard molar enthalpy of oxidation of magnesium, it is possible to carry out successively the following two reactions in an adiabatic calorimeter:

 $R_1: Mg_{(s)} + 2H^+_{(aq)} \rightarrow Mg^{2+}_{(aq)} + H_{2(g)}$ Standard molar enthalpy of reaction $R_1 \Delta_{r1}H^+_{(T)} = -435 \text{ kJ.mol}^{-1}$

 $R_2: MgO_{(s)} + 2H^+_{(aq)} \rightarrow Mg^{2+}_{(aq)} + H_2O_{(l)}$ Standard molar enthalpy of reaction $R_2 \Delta_{r2}H^{\circ}_{(T)} = -88.3 \text{ kJ.mol}^{-1}$

It will be assumed that the work related to the outside pressure can be neglected.

Wp=0

- a) Recall the principle of operation of an adiabatic calorimeter.
- b) What type of reactions are R_1 and R_2 ?
 - O c) After defining the thermodynamic system, establish the energy balance of the system.
 - \ d) To carry out reaction R₂, 0.1 mol of magnesium oxide is introduced into the calorimeter in 100 g of acidified water ([H⁺] = 2.0 mol.L⁻¹). The initial temperature is 25 ° C. Determine the final temperature reached in the calorimeter

3-

- \a) Using a method of your choice (Hess cycle, or combination of chemical reactions), give the expression of the standard molar enthalpy of oxidation of magnesium $\Delta_{Oxy}H^{\circ}_{298}$ according to the data of the exercise.
- \searrow b) Calculate the value of the standard molar enthalpy of oxidation of magnesium $\Delta_{Oxy}H^{\circ}_{298}$.
- (Ve) What is the physical meaning of the enthalpy of this reaction?

Data:

The heat capacity of the obtained solutions is the same as the heat capacity of pure water.

Heat capacity of water: Cp_{water} = 4.18 J.K⁻¹.g⁻¹.

Water equivalent of the calorimeter: $\mu = 60.0 \text{ g}$.

 $\Delta_{\rm f} H^{\circ}_{298} H_2 O(I) = -285 \text{ kJ.mol}^{-1}$

 $M_0 = 16.0 \text{ g.mol}^{-1}$ $M_{Mg} = 24.3 \text{ g.mol}^{-1}$

Exercise II - Chemical equilibria - Germanium oxide (13 points)

Parts A and B are independent

This exercise studies the reduction of germanium oxide GeO by carbon monoxide CO_(g). Carbon monoxide can participate in another chemical equilibrium that is firstly studied in part A below.

<u>Part A:</u> At high temperature, graphite C_{graphite (s)} as a solid can react with carbon dioxide CO_{2 (g)} to produce carbon monoxide CO (g) according to the following equilibrium

A1) $C_{\text{graphite (s)}} + CO_{2(g)} \stackrel{\leftarrow}{\hookrightarrow} 2 CO_{(g)}$ (i)

- A1a) Is this equilibrium sensitive to pressure? Why? How would the total pressure qualitatively evolve when the equilibrium is established at a constant volume from an initial state made of $C_{graphite}$ (s) and $CO_{2(g)}$?
- A1b) What is the variance of the system at equilibrium? What conclusion can you make?
 - A1c) Knowing that the equilibrium is established from an initial state containing 1 mole of $CO_{2(g)}$ and an excess of $C_{graphite(s)}$, establish the expression of the equilibrium constant $K^{\circ}_{(T)}$ as a function of the degree of conversion of CO_{2} , α (0 < α <1), and the total pressure P_{t} of the gas mixture.
- A2) At a temperature $T_1 = 1330$ K under a total pressure $P_t = 1$ bar, the degree of conversion α of $CO_{2(g)}$ is equal to 0.997, indicating that most of the CO_2 is converted into CO_2 .
 - **A2a)** Use this information to calculate the equilibrium constant $K_{(i)}^{0}_{1330}$.
 - **A2b)** Calculate $K_{(i)}^{0}_{1330}$ using the thermodynamic data given in the table below.
 - **A2c)** Explain the difference between the numerical values of the equilibrium constant thus calculated.

<u>Part B</u>: The reduction of $\frac{GeO_{(s)}}{GeO_{(s)}}$ by carbon monoxide $\frac{CO_{(g)}}{GeO_{(g)}}$ is now studied at a temperature of $\frac{T_2}{GeO_{(g)}}$ = 950 K (reaction (i) doesn't occur at this temperature).

B1) A reactor of 30 L (constant volume) is completely emptied prior to introducing 10 moles of carbon monoxide CO (g) and allowing the following equilibrium (ii) to establish at $T_2 = 950$ K. The numerical value of the corresponding equilibrium constant at 950 K is $K_{(ii)}^{0}_{950} = 1.0$.

$$2 CO_{(g)} \leftrightarrows CO_{2 (g)} + C_{(s)}$$
 (ii)

- **B1a)** Calculate at equilibrium, the numbers of moles of all the constituents (n_{CO}, n_{CO_2}, n_C) and the partial pressures of the gaseous constituents (P_{CO}, P_{CO_2}) .
- **B1b)** Show that the following relationship applies at any time: $n_{CO} + 2 n_{CO_2} = 10$.

B2) 10 moles of germanium monoxide $GeO_{(s)}$ are added to the system thus obtained at equilibrium (ii) in order to study the reduction of $GeO_{(s)}$ according to equation (iii). The numerical value of the corresponding equilibrium constant at 950 K is $K_{(iii)}^{0}_{950} = 0.8$.

$$GeO_{(s)} + CO_{(g)} \stackrel{\leftarrow}{\rightarrow} Ge_{(s)} + CO_2(g)$$
 (iii)

- **B2a)** According to the numerical value of the variation of free enthalpy ΔG , is it possible to reduce GeO in Ge following the forward reaction of equilibrium (iii)?
- **B2b)** What is the variance of the system when both equilibria (ii) and (iii) are achieved? What conclusion(s) can you make?
- B2c) What is the influence of temperature on equilibrium (iii)? Justify your answer.
- **B3)** To achieve favorable conditions for the reduction of GeO_(s) while maintaining the temperature constant at 950 K, the volume of the reactor is modified to a value V 'to be determined. Both equilibria (ii) and (iii) are then established and their equilibrium constants both apply.
- **B3a)** Deduce the relationship between the new pressure of CO at equilibrium (noted $P_{\rm CO}^{'}$) and the two equilibrium constants.
- **B3b)** Describe the state of the system by calculating the new partial pressures (P'_{CO}, P'_{CO_2}) , the total pressure P'_t , the numbers of moles (n'_{CO}, n'_{CO_2}) and the new volume V'.

Data:

Substance (physical state))	Δ _f H ^o ₂₉₈ (kJ.mol ⁻¹)	S° ₂₉₈ (J.K ⁻¹ .mol ⁻¹)
C _{graphite} (s)	0	5.8
CO (g)	-110.4	197.7
CO _{2 (g)}	-393.5	213.7
GeO (s)	-255.0	73.0
Ge (s)	0	21.0