

CHEMISTRY TEST nº1 (1h30)

For all numerical applications, take: $R=8.314 \text{ J.mol}^{-1}$. K^{-1} ; K=0 (°C) + 273 K 1 atm = 760 Torr = 101325 Pa = 1.013 bar. E=1 bar All gases may be considered as ideal

Gaseous carbon dioxide CO_2 released by human activities is the main cause of the increase in the greenhouse effect. To meet the environmental regulations that aim to reduce the emission of CO_2 in the atmosphere and limit its concentration, technical solutions are studied.

The 2 exercises can be treated independently - **All answers must be justified**. No documents allowed.

Exercise I – Mineral sequestration of gaseous carbon dioxide CO₂ (8 points)

Mineral carbonation is one of the possible alternatives for storing CO_2 . The objective of this study is to determine whether solid iron oxide (FeO) could be used to capture CO_2 , according to reaction (1):

FeO (s) + CO₂ (g)
$$\leftrightarrows$$
 FeCO₃ (s) (1).

Note that the two solids FeO and FeCO₃ are not miscible at all.

- **1-** Give the literal expressions then calculate the standard molar enthalpy change $\Delta_{R1}H_{298}^0$ and standard molar entropy change $\Delta_{R1}S_{298}^0$ of reaction of carbonation of FeO(s) at 298K.
- **2-** Give the literal expression then calculate the standard molar free enthalpy change $\Delta_{R1}G_{298}^0$ of reaction of carbonation of FeO(s) at 298K.
- **3-** Give the literal expression then calculate the thermodynamic equilibrium constant K_{298K}^0 at 298K.
- 4- Taking into account the composition of air (see data section), calculate the partial pressure of CO₂ (in bar) when the pressure of air is 1 bar.
- 5- Can the reaction of carbonation of FeO occur spontaneously at 25°C with a total pressure of air is 1 bar?
- **6-** If not, at which temperature would this reaction become spontaneous under the air pressure of 1 bar? Can this temperature be easily reached in industrial conditions?
- 7- What other experimental condition (s) could you suggest to facilitate the reaction?

Data:

Compound '	$\overline{\Delta_f H_{298}^0}$ (kJ.mol ⁻¹)	$\frac{\overline{S_{298}^0}}{[J.mol^{-1}.K^{-1})}$
FeO (s)	-272.0	61.0
FeCO _{3 (s)}	-737.0	91.0
CO _{2 (g)}	-393.5	214

The influence of the thermal capacities will be neglected.

Composition of air expressed in volume percentage:

 $N_2 = 78.08$

 $O_2 = 20.95$

Ar = 0.93

 $CO_2 = 0.035$

others= 0.005.

Exercise II – Quantification of residual CO₂ after absorption (12 points)

The carbon dioxide contained in a gaseous effluent can be separated from the rest of the gases by absorption (gas-liquid transfer). The amount of residual CO₂ after treatment can be determined by various methods, including gravimetric and acid-base titrations which are discussed below.

A- Gravimetric titration

In this case, the gas recovered after absorption is bubbled in a basic solution of divalent cation (here based on strontium Sr^{2+}): this makes it possible both to trap CO_2 in the form of carbonate ions (CO_3^{2-}) and to precipitate these carbonate ions as $SrCO_3$; we can then quantify them by weighing the formed solid.

To do this, 5 L of a solution of strontium hydroxide ($Sr(OH)_2$) at 0.16 mol.L⁻¹ are used. In this solution, $Sr(OH)_2$ is completely dissociated into Sr^{2+} and OH^- ions.

In part A, it will be assumed that CO_2 is only in the form of CO_3^2 .

- 1- Calculate the solubility of strontium carbonate (in mol.L⁻¹) at 25°C.
- **2-** Calculate the concentration of carbonate ions at the beginning of the precipitation of strontium carbonate.
- **3-** Calculate the concentration of carbonate ions present in solution when 0.54 mole of CO₂ have reacted. Comment on your result: is this gravimetric titration relevant?

Data:

 $K_s(SrCO_3) = 1.6x10^{-9} \text{ at } 25^{\circ}C$:

Molar mass (g.mol⁻¹):

Sr: 121.6

O:16.0

H:1.0

C:12.0

S:32.1

B- Acid-base titration

In this case, the gas recovered after absorption is bubbled at $25 \,^{\circ}$ C in $3 \,^{\circ}$ L of a sodium hydroxide solution (which initial concentration is [NaOH] = $0.5 \,^{\circ}$ mol.L⁻¹) which traps the CO₂. The resulting solution is referred as the "bubbled solution" in the following.

To quantify the entrapped CO_2 , a sample of this bubbled solution is taken and titrated with a hydrochloric acid (HCl) solution, a strong acid.

- **1-** Caption the distribution diagram of the carbonate species present in aqueous solution as a function of pH (figure given in appendix: do not forget to give it back with your copy !!). Among other information, specify on the diagrams the remarkable values.
- **2-** Calculate the initial pH of the sodium hydroxide solution contained in the flask (note that sodium hydroxide is a strong base).
- 3- a) At this pH, calculate the following ratios: $[CO_3^2]/[HCO_3]$ and $[HCO_3]/[H_2CO_3]$.
 - b) Which is the predominant carbonate form in the bubbled solution?
 - c) Was this predictable without calculation?
- **4-** During the titration of the bubbled solution with hydrochloric acid, the three following reactions occur:

$$HCO_3^- + H_3O^+ \leftrightarrows H_2CO_3 + H_2O$$
 (2)

$$OH^{-} + H_{3}O^{+} \leftrightarrows 2H_{2}O \tag{3}$$

$$CO_3^{2-} + H_3O^+ \leftrightarrows HCO_3^- + H_2O$$
 (4)

- a) Calculate the equilibrium constant at 25°C for each reaction (K2, K3, K4).
- b) Deduce the order in which reactions occur as hydrochloric acid is added.

Data (25°C):

Couple H_2CO_3/HCO_3 : Couple HCO_3 / CO_3 ²: $pK_{A1} = 6.3$

 $pK_{A2} = 10.3$

 $pK_{e} = 14$