

Assessment of Chemistry 2 (2 hours)

- No documents allowed. Any type of calculator allowed.
- Your answers and your approach must be justified. Literal formulas must clearly appear, then put into numerical form before giving the result of your calculations.
- $R = 8.314 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ and $0 \,^{\circ}\text{C} = 273 \text{ K}$.

Exercise 1: (approximately 14 points)

Chloroform is an organochlorine compound with molecular formula CHCl₃. It is used in different applications such as, for example, solvent for several organic compounds or precursor in the formation of fluorinated polymers. Chloroform can be produced from methanol (CH₃OH), a process leading to the formation of a methanol-chloroform binary mixture that must be treated successively to separate the two components.

1st part : Pure components

The Clapeyron equation $\frac{dP}{dT} = \frac{\Delta_{vap}H^{\circ}}{T \Delta V}$ can be integrated in the form: $\ln P^* = \frac{-\alpha}{T} + \beta$.

Methanol (A)

- 1. Calculate, in °C, the boiling temperature of methanol under 760 mmHg.
- 2. Calculate, in kJ \cdot mol⁻¹, $\Delta_{vap}H^{\circ}$ of methanol.

Chloroform (B)

3. Calculate the numerical values of α and β for the chloroform vaporisation. The accuracy on α will be within 1 and on β within 0.01.

2nd part: Methanol-chloroform binary mixture, hypothesis of ideal solution.

In this 2nd part, the methanol – chloroform mixture, investigated under a total pressure P of 760 mmHg, is supposed to form an ideal solution.

- 4. Establish, at the liquid/vapour equilibrium of the methanol chloroform mixture, the literal expression of the chloroform molar fraction in the liquid phase (noted $x_{\rm B}$) and of the chloroform molar fraction in the vapour phase (noted $y_{\rm B}$) as function of the total pressure P and of the saturating vapour pressures $P_{\rm A}^*$ and $P_{\rm B}^*$.
- 5. Calculate the composition in molar fraction of chloroform of the liquid and vapour phases at equilibrium at 63.0 °C under the total pressure *P* of 760 mmHg.

3rd part: Methanol-chloroform binary mixture, case of real solution.

From now on we will work on the methanol – chloroform mixture under the pressure of 760 mmHg using the experimental data shown in Table 2.

- Carefully draw the isobaric diagram (on the graph millimetre paper provided in the appendix) of the methanol – chloroform mixture as function of the chloroform composition expressed as molar fraction and mention all relevant information.
- 7. What kind of miscibility does the methanol chloroform mixture show?
- 8. What can you say about the interactions between methanol and chloroform?
- 9. What is the unique particularity of the mixture with a chloroform molar fraction equal to 0.651?

A kilogram of a methanol – chloroform mixture, noted M, of global <u>mass</u> composition in chloroform $w_{M,B} = 0.651$ is brought to the temperature of 57.1 °C under 760 mmHg.

10. What are, at this temperature, the molar composition and the mass of the present phase (or phases)?

A ton of the same mixture M, $w_{M,B} = 0.651$, is introduced in a facility of fractioned distillation.

11.If the fractionation facility is sufficiently efficient: what (nature, composition, mass) will the residue and the distillate of the distillation will be made of?

Component B (chloroform): $M_{\rm B} = 119.4 \,\mathrm{g \cdot mol^{-1}}$

Data

Component A (methanol):

 $M_{\rm A} = 32 \,\mathrm{g} \cdot \mathrm{mol}^{-1}$

 $\ln P_{\rm A\,(mmHg)}^* = \frac{-4498}{T} + 19.96$

Table 1 : Saturating vapour pressures of chloroform as function of the temperature.

θ (°C)	50.5	74.0		
P*(mmHg)	529	1133	-	

Mixture A – B:

Table 2 : Chloroform molar composition of the liquid (x_B) and vapour (y_B) phase at equilibrium of a methanol-chloroform mixture at several temperatures and under a total pressure of 760 mmHg.

θ(°C)	63.0 \vee	60.0V	57.17	54.6	53.9	54.5	56.0	58.0	59.8	61.3
УB	0.100	0.262	0.417	0.558	0.651	0.726	0.791	0.872	0.941	1.000
x _B	0.037	0.115	0.234	0.424	0.651	0.844	0.925	0.969	0.988	1.000

h has bee

Exercise 2: (approximately 6 points)

The 2 parts are independent.

Sulfuryl chloride is obtained by the following reaction:

$$SO_{2gas} + Cl_{2gas} \rightleftharpoons SO_2Cl_{2gas}$$

The equilibrium constants of this reaction at 353 K and 543 K are $K^{\circ}_{353} = 1.64$ and $K^{\circ}_{543} = 1.6 \times 10^{-3}$ respectively.

Part 1:

At 353 K, we introduce in a reactor kept at a pressure of 3 bar,

- 0.1 moles of Cl₂
- 0.4 moles of SO₂
- 0.15 moles of SO₂Cl₂
- 1. After calculating the $\Delta_r G$, give the direction of evolution of the system.

Part 2:

- 2. Express and calculate $\Delta_r G^\circ$, at 353 K and 543 K.
- 3. Calculate the $\Delta_r H^\circ$ and the $\Delta_r S^\circ$ of the synthesis reaction, knowing that they are both temperature independent.
- 4. Comment on the sign of these quantities. In the case you cannot calculate them, what should the sign of these quantities be according to the elements you have?

Appendix: graph paper for the isobaric diagram (exercise 1).

End of the statement.

1ger

ne

