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Exercise 1.

1. Let z € C* and define
Vn € N, u,, = cosh(n)|z|" >0

We use the ratio test for the convergence of the series ) w,:
Upy1  cosh(n+ 1) entl —e -1 entl

U, cosh(n) en —e "

|z| =elz] — e|z|.
n—+oo en n—+o0o

Hence, by the ratio test, the series ) w, converges if |x| < 1/e and diverges if [z| > 1/e: we conclude
that R = 1/e.

Now, for z € (—R, R),

= XNem e 1< T\"™
Zcosh(n)x" = Z Tm" =3 Z ((em)” + (g) )
n=0 n=0 n=0
1 (X n NG
=3 Z(ex) + Z (7) since both series converge
e
n=0 n=0
1 1 n 1
S 2\l—ex 1-—2z/e
2. Let x € C* and define n
VneN, u, = 50
n Up Gn e |z]
We use the ratio test for the convergence of the series ) uy:
n 1 (2 1 1
u+1_ n+ (TL-i— )‘ 2|_ n+ |£B2| —5 0.
U, (2n + 3)! 2n+2)2n+3)n" notoe
Hence, by the ratio test, the series ) u, converges. We conclude that R = +o0.
For = € R*,
“+o0 “+oo “+o00
n 1 L2n+1)—1 1 1 1
—1)" 2n _ = 2n _ = —1)" _ 2n
,;)( ) (2n+1)!x 22 (2n+1)! v 2;( ) <(2n)! (2n+1)!>m
1 ( 13X 1
— 2n n 2n+1 . .
=— " — =y (-1 ———=x ) since both series converge
i > |
2 ! Bt (2n + 1)!
1
= 5o - — sm(m)
If z =0, we obtain:
= n 0
n 2n 0
— -1)°==0
nz::()( ) (2n+1) (=1) 1

Exercise 2. First observe that the function

(I,400) — R
1

z1n(x)

xT

is decreasing (and piecewise continuous). Hence, by the integral comparison test, for N > 3,
N N

N ds 1 1 1 1 Node
/2 xIn(z) = nz:; nln(n) - 21n(2) +n§:: nln(n) = 21n(2) +/2 zln(z)’

3




Since

dx
/ TIn(z) =In(lnz) + C,

we obtain:

VN >3, In(In(N 4+ 1)) —In(In2) < Sy < 211 +In(ln N) — In(In 2).

(2)

In particular, by the Squeeze Theorem, we conclude that

lim Sy = +4o0,
N——+oco

hence the series (S) diverges. Now, for N > 3,

1
In(In(N + 1)) — In(In2) SN 21n(2)
In(In N) = In(In N) =1+ In(In N) ’

—In(In2)

and since In(In(N + 1)) N In(In N) (see below) we conclude, by the Squeeze Theorem, that
— 400

lim S

_ON
N—+oo In(ln N) ’

ie.,
Sy~ In(InN).
N—+oo
To show that In(In(N + 1)) N In(In N), we may use the Mean Value Theorem: for N > 3, there exists

—+o0
ey € (N, N + 1) such that

1
In(In(N+1)) =In(In N _—
n(In(N +1)) =In(laN) + ——\
hence
In(ln(N +1 1
n(n( - )): + — 1
In(ln N) envIneyIn(ln N) N—+oo
Exercise 3.
1. Notice that
n+11 n 1
un_H—un:fln(nJrl)JrZ + In(n ZE
k=1 k=1

. n + 1
B n+1 n—+1

1 1
=In(1-
n( n—|—1>+n+1

1 1 1 1
n—>:+oo_n+1_2(n+1)2+o<n2> + n—+1

1
n—;\—;-oo 2n2

<0,

which is the general term of a convergent series. Hence, by the equivalent test, the series >, (uni1 — uy) is
convergent.

2. Observe that for N € N,

2

E (Un+1 — Un) = UN1 — U1 = UN41 — L.

Now, since the series >, (up41 — un) converges, i.e., the limit
N

lim Uptl — Up) = lim unsqp —1
N—+o00 1( nt n) N—+o0 *
n—

exists in R, we conclude that Nlim un+1 exists in R, and hence that the sequence (u,)n > 1 converges.
—+o0



3. For N € N with N > 2:

N N
SNZZTIL—IH(”_1> Z (In(n) — In(n — 1)) :(

n=2

N
Z > N)y=uy-1 — -1
n*Qn

N—+o0

hence we conclude that the series (S) converges and that

i(iln(nﬁl>)yl.

Exercise 4. Define the sequence (uy)nen as

(="
14++vn’

Clearly, the sequence (uy,)nen is an alternating sequence, and for n € N one has

Up =

|un+1| < |un|

Moreover,

lim wu, =0,
n—-+oo

hence, by the Alternating Series Test, the series ) u,, is convergent. We also know that

+oo

>

n=N+1

1
< |lu = —
< Junia] 1+VN+1

Hence, a sufficient condition for Sy to be an approximation of the sum of the series (S) with error less than
1075 is

YN > 0,|Ry| =

1
- <107° = 14+V/N+1>10° < N> (10°-1)>—1.
1+vVN+1 ( )

Hence, a sufficient condition is N > 1010,

Exercise 5.

1. Let a,b € R% . The function

e—at _ e—bt
t—> ;

is continuous on R , hence the integral I(a,b) is improper at 0% and at +-00. Now,

e—at _ e—bt

1
; = t((l—at—i—O( ))—(1—bt+o(t))) =, ~atb+ol) ——a+beR,

hence the integral I(a,b) is falsely improper at 0. Moreover,

—e
t

efat —bt
< efat + efbt

— i

Yt € [1,+00),

and since a > 0 and b > 0, we know that the improper integrals

+00 Foo
/ e % dt and / e Pt dt
1 1

converge hence, by the comparison test, the improper integral I(a, b) is absolutely convergent at +oo. Hence
the improper integral I(a,b) converges.

2. Let A > 0. We use Theorem 3 with I = R%, J = [A, +00) and the function u defined by:
u: RY x[A, +o0) — R
t
(t, ) —
e For all (t,2) € R} x [A, +00) the partial derivative dou(t,x) clearly exists and in fact:

Dou(t,z) = e "



e Clearly, for all z € [A, +00), the functions

RY — R and RY — R
—t —xt —xt
- t — Ohu(t,x) ="
t o uta) = te 2ult, ¥) = e
are continuous.
e Define the function g as
g: R — R
t — e At

Clearly, g is continuous and

V(t,z) € R, x [A,400), |Gau(t,z)| =e ™ < e At

+oo
/ e At dt
0

converges (since A > 0). We also know (from Question 1) that for all 2 € R’ , the improper integral

+oo
/ u(t,x) dt
0

e Moreover, the improper integral

converges.

Hence we conclude that ¢ is differentiable on [A, +00) and that
400
Vz € [A, +0), ¢'(z) = / e "t dt.
0

Now, since this is true for all A > 0, we conclude that ¢ is differentiable on

U [4 +00) =R}
A€Ry,

and that oo
Ve e RY, ¢'(z) = / e "t dt.
0

Let X >0 and x € R%. Then:
X —ztt=X —zX
1 1
/ e“dt[e } I
0 -T ], T T X—+oo T

1
Ve e RY, ¢'(z) = —

Hence

. From the previous question we conclude that there exists C' € R such that

Ve e R, ¢(x) =In(z) + C.

+oo —t . —t +oo
so(l):/ ¢ -° dt:/ 0dt =0,
0 0

Now, since

t

we conclude that C' = 0, hence
p: R — R
x +— In(x).

. Let a,b € R} and X,Y € R% such that X <Y. Using the substitution s = at:

Y .—at _ bt aY —s _ ,—bs/a d +o0o —s _ ,—bs/a
/ £ qt= / SN / € T  ds=y(b/a) = In(b/a).
a 0

x t x s/a a x-ot s
Y -+

+oo —at _ ,—bt
Va,b € R", I(a,b):/ ————dt=In (b>
0

Hence



