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Exercise 1.

1. Let x ∈ C
∗ and define

∀n ∈ N, un = cosh(n)|x|n > 0.

We use the ratio test for the convergence of the series
∑

n un:

un+1

un
=

cosh(n+ 1)

cosh(n)
|x| = en+1 − e−n−1

en − e−n
|x| ∼

n→+∞

en+1

en
|x| = e|x| −→

n→+∞

e|x|.

Hence, by the ratio test, the series
∑

n un converges if |x| < 1/e and diverges if |x| > 1/e: we conclude
that R = 1/e.

Now, for x ∈ (−R,R),

+∞
∑

n=0

cosh(n)xn =

+∞
∑

n=0

en + e−n

2
xn =

1

2

+∞
∑

n=0

(

(ex)n +
(x

e

)n)

=
1

2

(

+∞
∑

n=0

(ex)n +

+∞
∑

n=0

(x

e

)n
)

since both series converge

=
1

2

(

1

1− ex
+

1

1− x/e

)

2. Let x ∈ C
∗ and define

∀n ∈ N, un =
n

(2n+ 1)!
|x|2n > 0.

We use the ratio test for the convergence of the series
∑

n un:

un+1

un
=

n+ 1

(2n+ 3)!

(2n+ 1)!

n
|x2| = n+ 1

(2n+ 2)(2n+ 3)n
|x2| −→

n→+∞

0.

Hence, by the ratio test, the series
∑

n un converges. We conclude that R = +∞.

For x ∈ R
∗,

+∞
∑

n=0

(−1)n
n

(2n+ 1)!
x2n =

1

2

+∞
∑

n=0

(−1)n
(2n+ 1)− 1

(2n+ 1)!
x2n =

1

2

+∞
∑

n=0

(−1)n
(

1

(2n)!
− 1

(2n+ 1)!

)

x2n

=
1

2

(

+∞
∑

n=0

(−1)n
1

(2n)!
x2n − 1

x

+∞
∑

n=0

(−1)n
1

(2n+ 1)!
x2n+1

)

since both series converge

=
1

2
cos(x)− 1

2x
sin(x).

If x = 0, we obtain:
+∞
∑

n=0

(−1)n
n

(2n+ 1)!
02n = (−1)0

0

1!
= 0.

Exercise 2. First observe that the function

(1,+∞) −→ R

x 7−→ 1

x ln(x)

is decreasing (and piecewise continuous). Hence, by the integral comparison test, for N ≥ 3,

∫ N+1

2

dx

x ln(x)
≤

N
∑

n=2

1

n ln(n)
=

1

2 ln(2)
+

N
∑

n=3

1

n ln(n)
≤ 1

2 ln(2)
+

∫ N

2

dx

x ln(x)
.



Since
∫

dx

x ln(x)
= ln(lnx) + C,

we obtain:

∀N ≥ 3, ln
(

ln(N + 1)
)

− ln(ln 2) ≤ SN ≤ 1

2 ln(2)
+ ln(lnN)− ln(ln 2).

In particular, by the Squeeze Theorem, we conclude that

lim
N→+∞

SN = +∞,

hence the series (S) diverges. Now, for N ≥ 3,

ln
(

ln(N + 1)
)

− ln(ln 2)

ln(lnN)
≤ SN

ln(lnN)
≤ 1 +

1

2 ln(2)
− ln(ln 2)

ln(lnN)
,

and since ln
(

ln(N + 1)
)

∼
N→+∞

ln(lnN) (see below) we conclude, by the Squeeze Theorem, that

lim
N→+∞

SN

ln(lnN)
= 1,

i.e.,
SN ∼

N→+∞

ln(lnN).

To show that ln
(

ln(N + 1)
)

∼
N→+∞

ln(lnN), we may use the Mean Value Theorem: for N ≥ 3, there exists

cN ∈ (N,N + 1) such that

ln
(

ln(N + 1)
)

= ln(lnN) +
1

cN ln cN
,

hence
ln
(

ln(N + 1)
)

ln(lnN)
= 1 +

1

cN ln cN ln(lnN)
−→

N→+∞

1.

Exercise 3.

1. Notice that

un+1 − un = − ln(n+ 1) +

n+1
∑

k=1

1

k
+ ln(n)−

n
∑

k=1

1

k

= ln

(

n

n+ 1

)

+
1

n+ 1

= ln

(

1− 1

n+ 1

)

+
1

n+ 1

=
n→+∞

− 1

n+ 1
− 1

2(n+ 1)2
+ o

(

1

n2

)

+
1

n+ 1

∼
n→+∞

− 1

2n2
< 0,

which is the general term of a convergent series. Hence, by the equivalent test, the series
∑

n(un+1 − un) is
convergent.

2. Observe that for N ∈ N,
N
∑

n=1

(un+1 − un) = uN+1 − u1 = uN+1 − 1.

Now, since the series
∑

n(un+1 − un) converges, i.e., the limit

lim
N→+∞

N
∑

n=1

(un+1 − un) = lim
N→+∞

uN+1 − 1

exists in R, we conclude that lim
N→+∞

uN+1 exists in R, and hence that the sequence (un)n ≥ 1 converges.



3. For N ∈ N with N ≥ 2:

SN =

N
∑

n=2

1

n
− ln

(

n

n− 1

)

=

N
∑

n=2

1

n
−
(

ln(n)− ln(n− 1)
)

=

(

N
∑

n=2

1

n

)

− ln(N) = uN − 1 −→
N→+∞

γ − 1

hence we conclude that the series (S) converges and that

+∞
∑

n=2

(

1

n
− ln

(

n

n− 1

))

= γ − 1.

Exercise 4. Define the sequence (un)n∈N as

un =
(−1)n

1 +
√
n
.

Clearly, the sequence (un)n∈N is an alternating sequence, and for n ∈ N one has

|un+1| < |un|.

Moreover,
lim

n→+∞

un = 0,

hence, by the Alternating Series Test, the series
∑

n un is convergent. We also know that

∀N ≥ 0, |RN | =
∣

∣

∣

∣

∣

+∞
∑

n=N+1

un

∣

∣

∣

∣

∣

≤ |uN+1| =
1

1 +
√
N + 1

.

Hence, a sufficient condition for SN to be an approximation of the sum of the series (S) with error less than
10−5 is

1

1 +
√
N + 1

< 10−5 ⇐⇒ 1 +
√
N + 1 > 105 ⇐⇒ N > (105 − 1)2 − 1.

Hence, a sufficient condition is N ≥ 1010.

Exercise 5.

1. Let a, b ∈ R
∗

+. The function

t 7−→ e−at − e−bt

t

is continuous on R
∗

+, hence the integral I(a, b) is improper at 0+ and at +∞. Now,

e−at − e−bt

t
=

t→0

1

t

(

(

1− at+ o(t)
)

−
(

1− bt+ o(t)
)

)

=
t→0

−a+ b+ o(1) −→
t→0

−a+ b ∈ R,

hence the integral I(a, b) is falsely improper at 0+. Moreover,

∀t ∈ [1,+∞),

∣

∣

∣

∣

e−at − e−bt

t

∣

∣

∣

∣

≤ e−at + e−bt,

and since a > 0 and b > 0, we know that the improper integrals
∫ +∞

1

e−at dt and

∫ +∞

1

e−bt dt

converge hence, by the comparison test, the improper integral I(a, b) is absolutely convergent at +∞. Hence
the improper integral I(a, b) converges.

2. Let A > 0. We use Theorem 3 with I = R
∗

+, J = [A,+∞) and the function u defined by:

u : R
∗

+ × [A,+∞) −→ R

(t, x) 7−→ e−t − e−xt

t
.

• For all (t, x) ∈ R
∗

+ × [A,+∞) the partial derivative ∂2u(t, x) clearly exists and in fact:

∂2u(t, x) = e−xt.



• Clearly, for all x ∈ [A,+∞), the functions

R
∗

+ −→ R

t 7−→ u(t, x) =
e−t − e−xt

t

and R
∗

+ −→ R

t 7−→ ∂2u(t, x) = e−xt

are continuous.

• Define the function g as
g : R

∗

+ −→ R

t 7−→ e−At.

Clearly, g is continuous and

∀(t, x) ∈ R
∗

+ × [A,+∞),
∣

∣∂2u(t, x)
∣

∣ = e−xt ≤ e−At.

• Moreover, the improper integral
∫ +∞

0

e−At dt

converges (since A > 0). We also know (from Question 1) that for all x ∈ R
∗

+, the improper integral

∫ +∞

0

u(t, x) dt

converges.

Hence we conclude that ϕ is differentiable on [A,+∞) and that

∀x ∈ [A,+∞), ϕ′(x) =

∫ +∞

0

e−xt dt.

Now, since this is true for all A > 0, we conclude that ϕ is differentiable on
⋃

A∈R∗

+

[A,+∞) = R
∗

+

and that

∀x ∈ R
∗

+, ϕ′(x) =

∫ +∞

0

e−xt dt.

Let X > 0 and x ∈ R
∗

+. Then:

∫ X

0

e−xt dt =

[

e−xt

−x

]t=X

t=0

= −e−xX

x
+

1

x
−→

X→+∞

1

x
.

Hence

∀x ∈ R
∗

+, ϕ′(x) =
1

x
.

3. From the previous question we conclude that there exists C ∈ R such that

∀x ∈ R
∗

+, ϕ(x) = ln(x) + C.

Now, since

ϕ(1) =

∫ +∞

0

e−t − e−t

t
dt =

∫ +∞

0

0 dt = 0,

we conclude that C = 0, hence
ϕ : R

∗

+ −→ R

x 7−→ ln(x).

4. Let a, b ∈ R
∗

+ and X,Y ∈ R
∗

+ such that X < Y . Using the substitution s = at:

∫ Y

X

e−at − e−bt

t
dt =

∫ aY

aX

e−s − e−bs/a

s/a

ds

a
−→

X→0
+

Y→+∞

∫ +∞

0

e−s − e−bs/a

s
ds = ϕ(b/a) = ln(b/a).

Hence

∀a, b ∈ R
∗

+, I(a, b) =

∫ +∞

0

e−at − e−bt

t
dt = ln

(

b

a

)

.


