Exercise 1.

1. Let $x \in \mathbb{C}^{*}$ and define

$$
\forall n \in \mathbb{N}, u_{n}=\cosh (n)|x|^{n}>0 .
$$

We use the ratio test for the convergence of the series $\sum_{n} u_{n}$:

$$
\frac{u_{n+1}}{u_{n}}=\frac{\cosh (n+1)}{\cosh (n)}|x|=\frac{\mathrm{e}^{n+1}-\mathrm{e}^{-n-1}}{\mathrm{e}^{n}-\mathrm{e}^{-n}}|x| \underset{n \rightarrow+\infty}{\sim} \frac{\mathrm{e}^{n+1}}{\mathrm{e}^{n}}|x|=\mathrm{e}|x| \underset{n \rightarrow+\infty}{\rightarrow} \mathrm{e}|x| .
$$

Hence, by the ratio test, the series $\sum_{n} u_{n}$ converges if $|x|<1 / \mathrm{e}$ and diverges if $|x|>1 / \mathrm{e}$: we conclude that $R=1 / \mathrm{e}$.
Now, for $x \in(-R, R)$,

$$
\begin{aligned}
\sum_{n=0}^{+\infty} \cosh (n) x^{n} & =\sum_{n=0}^{+\infty} \frac{\mathrm{e}^{n}+\mathrm{e}^{-n}}{2} x^{n}=\frac{1}{2} \sum_{n=0}^{+\infty}\left((\mathrm{e} x)^{n}+\left(\frac{x}{\mathrm{e}}\right)^{n}\right) \\
& =\frac{1}{2}\left(\sum_{n=0}^{+\infty}(\mathrm{e} x)^{n}+\sum_{n=0}^{+\infty}\left(\frac{x}{\mathrm{e}}\right)^{n}\right) \quad \text { since both series converge } \\
& =\frac{1}{2}\left(\frac{1}{1-\mathrm{e} x}+\frac{1}{1-x / \mathrm{e}}\right)
\end{aligned}
$$

2. Let $x \in \mathbb{C}^{*}$ and define

$$
\forall n \in \mathbb{N}, u_{n}=\frac{n}{(2 n+1)!}|x|^{2 n}>0
$$

We use the ratio test for the convergence of the series $\sum_{n} u_{n}$:

$$
\frac{u_{n+1}}{u_{n}}=\frac{n+1}{(2 n+3)!} \frac{(2 n+1)!}{n}\left|x^{2}\right|=\frac{n+1}{(2 n+2)(2 n+3) n}\left|x^{2}\right| \underset{n \rightarrow+\infty}{\longrightarrow} 0 .
$$

Hence, by the ratio test, the series $\sum_{n} u_{n}$ converges. We conclude that $R=+\infty$.
For $x \in \mathbb{R}^{*}$,

$$
\begin{aligned}
\sum_{n=0}^{+\infty}(-1)^{n} \frac{n}{(2 n+1)!} x^{2 n} & =\frac{1}{2} \sum_{n=0}^{+\infty}(-1)^{n} \frac{(2 n+1)-1}{(2 n+1)!} x^{2 n}=\frac{1}{2} \sum_{n=0}^{+\infty}(-1)^{n}\left(\frac{1}{(2 n)!}-\frac{1}{(2 n+1)!}\right) x^{2 n} \\
& =\frac{1}{2}\left(\sum_{n=0}^{+\infty}(-1)^{n} \frac{1}{(2 n)!} x^{2 n}-\frac{1}{x} \sum_{n=0}^{+\infty}(-1)^{n} \frac{1}{(2 n+1)!} x^{2 n+1}\right) \quad \text { since both series converge } \\
& =\frac{1}{2} \cos (x)-\frac{1}{2 x} \sin (x)
\end{aligned}
$$

If $x=0$, we obtain:

$$
\sum_{n=0}^{+\infty}(-1)^{n} \frac{n}{(2 n+1)!} 0^{2 n}=(-1)^{0} \frac{0}{1!}=0
$$

Exercise 2. First observe that the function

$$
\begin{aligned}
(1,+\infty) & \longrightarrow \mathbb{R} \\
x & \longmapsto \frac{1}{x \ln (x)}
\end{aligned}
$$

is decreasing (and piecewise continuous). Hence, by the integral comparison test, for $N \geq 3$,

$$
\int_{2}^{N+1} \frac{\mathrm{~d} x}{x \ln (x)} \leq \sum_{n=2}^{N} \frac{1}{n \ln (n)}=\frac{1}{2 \ln (2)}+\sum_{n=3}^{N} \frac{1}{n \ln (n)} \leq \frac{1}{2 \ln (2)}+\int_{2}^{N} \frac{\mathrm{~d} x}{x \ln (x)}
$$

Since

$$
\int \frac{\mathrm{d} x}{x \ln (x)}=\ln (\ln x)+C
$$

we obtain:

$$
\forall N \geq 3, \ln (\ln (N+1))-\ln (\ln 2) \leq S_{N} \leq \frac{1}{2 \ln (2)}+\ln (\ln N)-\ln (\ln 2)
$$

In particular, by the Squeeze Theorem, we conclude that

$$
\lim _{N \rightarrow+\infty} S_{N}=+\infty
$$

hence the series (S) diverges. Now, for $N \geq 3$,

$$
\frac{\ln (\ln (N+1))-\ln (\ln 2)}{\ln (\ln N)} \leq \frac{S_{N}}{\ln (\ln N)} \leq 1+\frac{\frac{1}{2 \ln (2)}-\ln (\ln 2)}{\ln (\ln N)}
$$

and since $\ln (\ln (N+1)) \underset{N \rightarrow+\infty}{\sim} \ln (\ln N)$ (see below) we conclude, by the Squeeze Theorem, that

$$
\lim _{N \rightarrow+\infty} \frac{S_{N}}{\ln (\ln N)}=1
$$

i.e.,

$$
S_{N} \underset{N \rightarrow+\infty}{\sim} \ln (\ln N) .
$$

To show that $\ln (\ln (N+1)) \underset{N \rightarrow+\infty}{\sim} \ln (\ln N)$, we may use the Mean Value Theorem: for $N \geq 3$, there exists $c_{N} \in(N, N+1)$ such that

$$
\ln (\ln (N+1))=\ln (\ln N)+\frac{1}{c_{N} \ln c_{N}}
$$

hence

$$
\frac{\ln (\ln (N+1))}{\ln (\ln N)}=1+\frac{1}{c_{N} \ln c_{N} \ln (\ln N)} \underset{N \rightarrow+\infty}{\longrightarrow} 1 .
$$

Exercise 3.

1. Notice that

$$
\begin{aligned}
& u_{n+1}-u_{n}=-\ln (n+1)+\sum_{k=1}^{n+1} \frac{1}{k}+\ln (n)-\sum_{k=1}^{n} \frac{1}{k} \\
&=\ln \left(\frac{n}{n+1}\right)+\frac{1}{n+1} \\
&=\ln \left(1-\frac{1}{n+1}\right)+\frac{1}{n+1} \\
&=-\frac{1}{n+1}-\frac{1}{2(n+1)^{2}}+o\left(\frac{1}{n^{2}}\right)+\frac{1}{n+1} \\
& \sim \sim+\infty \\
& n \rightarrow+\infty \\
& 2 n^{2}
\end{aligned}
$$

which is the general term of a convergent series. Hence, by the equivalent test, the series $\sum_{n}\left(u_{n+1}-u_{n}\right)$ is convergent.
2. Observe that for $N \in \mathbb{N}$,

$$
\sum_{n=1}^{N}\left(u_{n+1}-u_{n}\right)=u_{N+1}-u_{1}=u_{N+1}-1
$$

Now, since the series $\sum_{n}\left(u_{n+1}-u_{n}\right)$ converges, i.e., the limit

$$
\lim _{N \rightarrow+\infty} \sum_{n=1}^{N}\left(u_{n+1}-u_{n}\right)=\lim _{N \rightarrow+\infty} u_{N+1}-1
$$

exists in \mathbb{R}, we conclude that $\lim _{N \rightarrow+\infty} u_{N+1}$ exists in \mathbb{R}, and hence that the sequence $\left(u_{n}\right) n \geq 1$ converges.
3. For $N \in \mathbb{N}$ with $N \geq 2$:

$$
S_{N}=\sum_{n=2}^{N} \frac{1}{n}-\ln \left(\frac{n}{n-1}\right)=\sum_{n=2}^{N} \frac{1}{n}-(\ln (n)-\ln (n-1))=\left(\sum_{n=2}^{N} \frac{1}{n}\right)-\ln (N)=u_{N}-1 \underset{N \rightarrow+\infty}{\longrightarrow} \gamma-1
$$

hence we conclude that the series (S) converges and that

$$
\sum_{n=2}^{+\infty}\left(\frac{1}{n}-\ln \left(\frac{n}{n-1}\right)\right)=\gamma-1
$$

Exercise 4. Define the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ as

$$
u_{n}=\frac{(-1)^{n}}{1+\sqrt{n}}
$$

Clearly, the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ is an alternating sequence, and for $n \in \mathbb{N}$ one has

$$
\left|u_{n+1}\right|<\left|u_{n}\right| .
$$

Moreover,

$$
\lim _{n \rightarrow+\infty} u_{n}=0
$$

hence, by the Alternating Series Test, the series $\sum_{n} u_{n}$ is convergent. We also know that

$$
\forall N \geq 0,\left|R_{N}\right|=\left|\sum_{n=N+1}^{+\infty} u_{n}\right| \leq\left|u_{N+1}\right|=\frac{1}{1+\sqrt{N+1}}
$$

Hence, a sufficient condition for S_{N} to be an approximation of the sum of the series (S) with error less than 10^{-5} is

$$
\frac{1}{1+\sqrt{N+1}}<10^{-5} \Longleftrightarrow 1+\sqrt{N+1}>10^{5} \Longleftrightarrow N>\left(10^{5}-1\right)^{2}-1
$$

Hence, a sufficient condition is $N \geq 10^{10}$.

Exercise 5.

1. Let $a, b \in \mathbb{R}_{+}^{*}$. The function

$$
t \longmapsto \frac{\mathrm{e}^{-a t}-\mathrm{e}^{-b t}}{t}
$$

is continuous on \mathbb{R}_{+}^{*}, hence the integral $I(a, b)$ is improper at 0^{+}and at $+\infty$. Now,

$$
\frac{\mathrm{e}^{-a t}-\mathrm{e}^{-b t}}{t} \underset{t \rightarrow 0}{=} \frac{1}{t}((1-a t+o(t))-(1-b t+o(t))) \underset{t \rightarrow 0}{=}-a+b+o(1) \underset{t \rightarrow 0}{\longrightarrow}-a+b \in \mathbb{R}
$$

hence the integral $I(a, b)$ is falsely improper at 0^{+}. Moreover,

$$
\forall t \in[1,+\infty),\left|\frac{\mathrm{e}^{-a t}-\mathrm{e}^{-b t}}{t}\right| \leq \mathrm{e}^{-a t}+\mathrm{e}^{-b t}
$$

and since $a>0$ and $b>0$, we know that the improper integrals

$$
\int_{1}^{+\infty} \mathrm{e}^{-a t} \mathrm{~d} t \quad \text { and } \quad \int_{1}^{+\infty} \mathrm{e}^{-b t} \mathrm{~d} t
$$

converge hence, by the comparison test, the improper integral $I(a, b)$ is absolutely convergent at $+\infty$. Hence the improper integral $I(a, b)$ converges.
2. Let $A>0$. We use Theorem 3 with $I=\mathbb{R}_{+}^{*}, J=[A,+\infty)$ and the function u defined by:

$$
\begin{aligned}
u: \mathbb{R}_{+}^{*} \times[A,+\infty) & \longrightarrow \mathbb{R} \\
(t, x) & \longmapsto \frac{\mathrm{e}^{-t}-\mathrm{e}^{-x t}}{t}
\end{aligned}
$$

- For all $(t, x) \in \mathbb{R}_{+}^{*} \times[A,+\infty)$ the partial derivative $\partial_{2} u(t, x)$ clearly exists and in fact:

$$
\partial_{2} u(t, x)=\mathrm{e}^{-x t}
$$

- Clearly, for all $x \in[A,+\infty)$, the functions

$$
\begin{array}{rlrl}
\mathbb{R}_{+}^{*} & \longrightarrow & \mathbb{R} & \text { and } \\
t & \longmapsto \mathbb{R}_{+}^{*} & \longrightarrow u(t, x)=\frac{\mathrm{e}^{-t}-\mathrm{e}^{-x t}}{t} & \\
t & & \longmapsto \partial_{2} u(t, x)=\mathrm{e}^{-x t}
\end{array}
$$

are continuous.

- Define the function g as

$$
\begin{aligned}
g: \mathbb{R}_{+}^{*} & \longrightarrow \mathbb{R} \\
t & \longmapsto \mathrm{e}^{-A t} .
\end{aligned}
$$

Clearly, g is continuous and

$$
\forall(t, x) \in \mathbb{R}_{+}^{*} \times[A,+\infty),\left|\partial_{2} u(t, x)\right|=\mathrm{e}^{-x t} \leq \mathrm{e}^{-A t}
$$

- Moreover, the improper integral

$$
\int_{0}^{+\infty} \mathrm{e}^{-A t} \mathrm{~d} t
$$

converges (since $A>0$). We also know (from Question 1) that for all $x \in \mathbb{R}_{+}^{*}$, the improper integral

$$
\int_{0}^{+\infty} u(t, x) \mathrm{d} t
$$

converges.
Hence we conclude that φ is differentiable on $[A,+\infty)$ and that

$$
\forall x \in[A,+\infty), \varphi^{\prime}(x)=\int_{0}^{+\infty} \mathrm{e}^{-x t} \mathrm{~d} t
$$

Now, since this is true for all $A>0$, we conclude that φ is differentiable on

$$
\bigcup_{A \in \mathbb{R}_{+}^{*}}[A,+\infty)=\mathbb{R}_{+}^{*}
$$

and that

$$
\forall x \in \mathbb{R}_{+}^{*}, \varphi^{\prime}(x)=\int_{0}^{+\infty} \mathrm{e}^{-x t} \mathrm{~d} t
$$

Let $X>0$ and $x \in \mathbb{R}_{+}^{*}$. Then:

$$
\int_{0}^{X} \mathrm{e}^{-x t} \mathrm{~d} t=\left[\frac{\mathrm{e}^{-x t}}{-x}\right]_{t=0}^{t=X}=-\frac{\mathrm{e}^{-x X}}{x}+\frac{1}{x} \underset{X \rightarrow+\infty}{\longrightarrow} \frac{1}{x} .
$$

Hence

$$
\forall x \in \mathbb{R}_{+}^{*}, \varphi^{\prime}(x)=\frac{1}{x}
$$

3. From the previous question we conclude that there exists $C \in \mathbb{R}$ such that

$$
\forall x \in \mathbb{R}_{+}^{*}, \varphi(x)=\ln (x)+C
$$

Now, since

$$
\varphi(1)=\int_{0}^{+\infty} \frac{\mathrm{e}^{-t}-\mathrm{e}^{-t}}{t} \mathrm{~d} t=\int_{0}^{+\infty} 0 \mathrm{~d} t=0
$$

we conclude that $C=0$, hence

$$
\begin{aligned}
\varphi: \mathbb{R}_{+}^{*} & \longrightarrow \mathbb{R} \\
x & \longmapsto \ln (x) .
\end{aligned}
$$

4. Let $a, b \in \mathbb{R}_{+}^{*}$ and $X, Y \in \mathbb{R}_{+}^{*}$ such that $X<Y$. Using the substitution $s=a t$:

$$
\int_{X}^{Y} \frac{\mathrm{e}^{-a t}-\mathrm{e}^{-b t}}{t} \mathrm{~d} t=\int_{a X}^{a Y} \frac{\mathrm{e}^{-s}-\mathrm{e}^{-b s / a}}{s / a} \frac{\mathrm{~d} s}{a} \underset{\substack{X \rightarrow 0^{+} \\ Y \rightarrow+\infty}}{\longrightarrow} \int_{0}^{+\infty} \frac{\mathrm{e}^{-s}-\mathrm{e}^{-b s / a}}{s} \mathrm{~d} s=\varphi(b / a)=\ln (b / a) .
$$

Hence

$$
\forall a, b \in \mathbb{R}_{+}^{*}, I(a, b)=\int_{0}^{+\infty} \frac{\mathrm{e}^{-a t}-\mathrm{e}^{-b t}}{t} \mathrm{~d} t=\ln \left(\frac{b}{a}\right) .
$$

