
SCAN 2 — DS 2 — 3h June 17, 2016

Exercise 1 (8.5 points). The two parts of this exercise can be solved independently, using the results of Part I
in Part II.

Part I – Study of a power series expansion — 4 points
We define the function

p : (−1, 1) −→ R
u 7−→

√
1 + u.

1. Justify that p is a solution on I of the following differential equation

(E) (2 + 2u)y′(u)− y(u) = 0

such that y(0) = 1.
We recall that p is the only solution of Equation (E) on (−1, 1) that takes the value 1 at 0.

2. By looking for a solution of the differential equation (E) such that y(0) = 1 in the form of a function y that
possesses a power series expansion, say

y(u) =

+∞∑
n=0

bnu
n,

show that:

• the function p possesses a power series expansion (and specify its radius of convergence);
• the power series expansion of p is

p(u) =

+∞∑
n=0

bnu
n

where b0 = 1 and
∀n ∈ N, bn+1 = − 2n− 1

2(n+ 1)
bn.

3. Show that:
∀n ∈ N, bn = (−1)n−1 (2n)!

(2n− 1)22n(n!)2
.

4. Prove that the sequence
(
|bn|
)
n∈N∗ is a non-increasing sequence.

5. We admit the following equivalent (known as Stirling’s formula) :

n! ∼
n→+∞

√
2πn

(n
e

)n
.

Show, using Stirling’s formula, that

|bn| ∼
n→+∞

1

αnβ

where α and β are two real numbers strictly greater than 1.

Part II – An approximation an arc length— 4.5 points
Let a, b ∈ R such that a < b. For a function f : [a, b] −→ R of class C1 we define

L(f) =

∫ b

a

√
1 + f ′(t)2 dt.

We recall that this number L(f) is the arc length of the graph of f . The goal of this part is to determine an
approximation of the arc length of the hyperbola, graph of the following function:

f : [1/2, 1] −→ R
t 7−→ 1/t.

We’re hence in the case where a = 1/2 et b = 1.

1. Explicit the integral expression of L(f).
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2. The goal of this question is to obtain an expression of L(f) in the form of a series.

a) Show that

∀t ∈ (0, 1),

√
1 + t4

t2
=

1

t2
+

+∞∑
n=1

bnt
4n−2,

where the sequence (bn)n∈N∗ is the sequence defined in the previous part.
b) We define the sequence of function (SN )N∈N∗ by:

∀N ∈ N∗, SN : R −→ R

t 7−→
N∑
n=1

bnt
4n−2.

i) Show that the series
(
SN (1)

)
N∈N∗ converges absolutely.

ii) Using the Dominated Convergence Theorem (that is recalled below) applied to the sequence of func-
tions (SN )N∈N∗ on [1/2, 1), show that∫ 1

1/2

+∞∑
n=1

bnt
4n−2 dt =

+∞∑
n=1

∫ 1

1/2

bnt
4n−2 dt.

c) Deduce that

L(f) = 1 +

+∞∑
n=1

bn
4n− 1

(
1− 1

24n−1

)
.

3. Explain why an upper bound of the error committed by approximating L(f) by

1 +

4∑
n=1

bn
4n− 1

−
4∑

n=1

bn
24n−1(4n− 1)

is
|b5|
19

+
|b5|

219 × 19
.

Remark: Maple gives L(f) = 1.13 . . ., and an upper bound of the error committed when approximating L(f) by the first five
terms is 0.00144.

Theorem 1 (Dominated Convergence Theorem). Let I be a real interval with endpoints a and b in R (with a < b). Let
(fn)n∈N be a sequence of piecewise continuous functions on I such that:
• the sequence of functions (fn)n∈N converges pointwise on I to a piecewise continuous function f ,
• there exists a piecewise continuous function g on I such that

∀t ∈ I, ∀n ∈ N,
∣∣fn(t)∣∣ ≤ g(t),

and, in the case where I is not a closed and bounded interval, the improper integral∫ b

a
g(t) dt

converges (the domination condition).
Then

lim
n→+∞

∫ b

a

∣∣fn(t)− f(t)
∣∣dt = 0,

and in particular,

lim
n→+∞

∫ b

a
fn(t) dt =

∫ b

a
f(t) dt,

and, in the case where I is not a closed and bounded interval, the improper integral on the right-hand side is absolutely convergent.

Exercise 2 (11.5 points). In this exercise, we work in R2 with its standard dot product and with the standard
Euclidean norm. The first two parts are independent from each other.

Part I – 4.5 points

1. Let q be the quadratic form defined by:

q : R2 −→ R
(x, y) 7−→ 3x2 + 2xy + 3y2.

a) Determine an orthonormal basis B′ in which the matrix of q is diagonal.
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b) We define
S =

{
(x, y) ∈ R2

∣∣ x2 + y2 = 1
}
.

Let u ∈ S . We denote by

[u]B′ =

(
x′

y′

)
the coordinates of the vector u in the basis B′. Show that x′2 + y′

2
= 1 and deduce that 2 ≤ q(u) ≤ 4.

c) Show that there exists um ∈ S such that q(um) = 2 and that there exists uM ∈ S such that q(uM ) = 4.
Deduce the value of max

u∈S
q(u) and the value of min

u∈S
q(u).

2. Let f be the mapping defined by:

f : R2 −→ R

(x, y) 7−→ 2

3
(x+ y)3 + 2(x+ y)2 + (x− y)2.

a) Determine the critical points of f .
b) Show that f admits a unique local minimum, and that this local minimum is attained at a unique point

N ∈ R2 that you will determine. Is this local minimum a global minimum of f on R2?
c) Let qN be the quadratic form, the matrix of which, in the standard basis of R2 is the Hessian matrix HNf

of f at the point N . Determine the value of max
u∈S

qN (u) and the value of min
u∈S

qN (u).

Part II – 3.5 points
Let a, b ∈ R and R ∈ R∗+. Let f be the mapping defined by:

f : R2 −→ R
(x, y) 7−→ (x− a)2 + (y − b)2.

We define the circle C centered at (a, b) of radius R:

C =
{
(x, y) ∈ R2

∣∣ f(x, y) = R2
}
.

1. For what points (x, y) ∈ C do we have ∂2f(x, y) = 0? what do we observe for the tangent line to the circle
C at these points?

2. In this question and the next one, (x0, y0) ∈ C is such that ∂2f(x0, y0) 6= 0.

a) Justify that there exists an open interval I ⊂ R such that x0 ∈ I, an open interval J ⊂ R such that y0 ∈ J
and a function ψ : I −→ J of class C2 such that

∀(x, y) ∈ I × J,
(
(x, y) ∈ C ⇐⇒ y = ψ(x)

)
.

b) What is the value of ψ(x0)?
c) Show that

ψ′(x0) = −
x0 − a
y0 − b

.

d) Show that

ψ′′(x0) = −
1 + ψ′(x0)

2

y0 − b
.

e) Deduce that

R =

(
1 + ψ′(x0)

2
)3/2∣∣ψ′′(x0)∣∣ .

3. Determine an equation of the tangent line to the circle C at the point (x0, y0).

The notion of curvature enables us to quantify how much the graph of a function of one variable recedes from
its tangent line at a point. Let I be an real interval and let h : I −→ R be a function of class C2. We admit
that we can define the curvature of h at a point t ∈ I by the number

h′′(t)(
1 + h′(t)2

)3/2 .
The goal of the next part is to define a similar notion of curvature for the graph of a function of 2 variables.
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Part III – 3.5 points
Let f : R2 −→ R be a function of class C2. Let (x0, y0) be a critical point of f . Let v = (v1, v2) ∈ R2. We
define the mapping

gv : R −→ R
t 7−→ f(x0 + tv1, y0 + tv2).

1. Compute g′v(t) and g′′v (t) in terms of the partial derivatives of f .

2. Let ρ be the mapping defined by
ρ : R2 −→ R

v 7−→ g′′v (0)(
1 + g′v(0)

2
)3/2 .

Deduce from the previous questions a simple expression of ρ(v). The number ρ(v) is called the curvature of
the function f in the direction (x0, y0) at the critical point (x0, y0).

3. Check that the mapping ρ is in fact the quadratic form the matrix of which in the standard basis of R2 is
the Hessian matrix of f at the point (x0, y0).

4. Determine the maximal curvature max
‖v‖=1

ρ(v) as well as the minimal curvature min
‖v‖=1

ρ(v) of the function f

defined in Part I at the point N as well as the directions in which they are attained.

5. Back to the general case. We define the Gaussian curvature of f at the critical point (x0, y0) as the product
of the eigenvalues of its Hessian matrix at the point (x0, y0).

a) Justify that the Gaussian curvature is a real number.

b) Determine the sign of the Gaussian curvature of the functions f , given by the graphs below, at the critical
point (0, 0), which is non-degenerate (that is, the Hessian matrix is invertible at the point (0, 0)).

(i) (ii) (iii)

c) What is the value of the Gaussian curvature at the critical point (0, 0) of the function f given by the
graph below?
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