Exercise 1 (8.5 points). The two parts of this exercise can be solved independently, using the results of Part I in Part II.

Part I - Study of a power series expansion - 4 points
We define the function

$$
\begin{aligned}
p:(-1,1) & \longrightarrow \mathbb{R} \\
u & \longmapsto \sqrt{1+u} .
\end{aligned}
$$

1. Justify that p is a solution on I of the following differential equation

$$
\begin{equation*}
(2+2 u) y^{\prime}(u)-y(u)=0 \tag{E}
\end{equation*}
$$

such that $y(0)=1$.
We recall that p is the only solution of Equation (E) on $(-1,1)$ that takes the value 1 at 0 .
2. By looking for a solution of the differential equation (E) such that $y(0)=1$ in the form of a function y that possesses a power series expansion, say

$$
y(u)=\sum_{n=0}^{+\infty} b_{n} u^{n}
$$

show that:

- the function p possesses a power series expansion (and specify its radius of convergence);
- the power series expansion of p is

$$
p(u)=\sum_{n=0}^{+\infty} b_{n} u^{n}
$$

where $b_{0}=1$ and

$$
\forall n \in \mathbb{N}, b_{n+1}=-\frac{2 n-1}{2(n+1)} b_{n}
$$

3. Show that:

$$
\forall n \in \mathbb{N}, b_{n}=(-1)^{n-1} \frac{(2 n)!}{(2 n-1) 2^{2 n}(n!)^{2}}
$$

4. Prove that the sequence $\left(\left|b_{n}\right|\right)_{n \in \mathbb{N}^{*}}$ is a non-increasing sequence.
5. We admit the following equivalent (known as Stirling's formula) :

$$
n!\underset{n \rightarrow+\infty}{\sim} \sqrt{2 \pi n}\left(\frac{n}{\mathrm{e}}\right)^{n}
$$

Show, using Stirling's formula, that

$$
\left|b_{n}\right| \underset{n \rightarrow+\infty}{\sim} \frac{1}{\alpha n^{\beta}}
$$

where α and β are two real numbers strictly greater than 1 .
Part II - An approximation an arc length- 4.5 points
Let $a, b \in \mathbb{R}$ such that $a<b$. For a function $f:[a, b] \longrightarrow \mathbb{R}$ of class C^{1} we define

$$
L(f)=\int_{a}^{b} \sqrt{1+f^{\prime}(t)^{2}} \mathrm{~d} t
$$

We recall that this number $L(f)$ is the arc length of the graph of f. The goal of this part is to determine an approximation of the arc length of the hyperbola, graph of the following function:

$$
\begin{aligned}
f:[1 / 2,1] & \longrightarrow \mathbb{R} \\
t & \longmapsto 1 / t .
\end{aligned}
$$

We're hence in the case where $a=1 / 2$ et $b=1$.

1. Explicit the integral expression of $L(f)$.
2. The goal of this question is to obtain an expression of $L(f)$ in the form of a series.
a) Show that

$$
\forall t \in(0,1), \frac{\sqrt{1+t^{4}}}{t^{2}}=\frac{1}{t^{2}}+\sum_{n=1}^{+\infty} b_{n} t^{4 n-2}
$$

where the sequence $\left(b_{n}\right)_{n \in \mathbb{N}^{*}}$ is the sequence defined in the previous part.
b) We define the sequence of function $\left(S_{N}\right)_{N \in \mathbb{N}^{*}}$ by:

$$
\begin{aligned}
\forall N \in \mathbb{N}^{*}, S_{N}: & \mathbb{R} \\
\longrightarrow & \mathbb{R} \\
t & \longmapsto \sum_{n=1}^{N} b_{n} t^{4 n-2} .
\end{aligned}
$$

i) Show that the series $\left(S_{N}(1)\right)_{N \in \mathbb{N}^{*}}$ converges absolutely.
ii) Using the Dominated Convergence Theorem (that is recalled below) applied to the sequence of functions $\left(S_{N}\right)_{N \in \mathbb{N}^{*}}$ on $[1 / 2,1)$, show that

$$
\int_{1 / 2}^{1} \sum_{n=1}^{+\infty} b_{n} t^{4 n-2} \mathrm{~d} t=\sum_{n=1}^{+\infty} \int_{1 / 2}^{1} b_{n} t^{4 n-2} \mathrm{~d} t
$$

c) Deduce that

$$
L(f)=1+\sum_{n=1}^{+\infty} \frac{b_{n}}{4 n-1}\left(1-\frac{1}{2^{4 n-1}}\right) .
$$

3. Explain why an upper bound of the error committed by approximating $L(f)$ by

$$
1+\sum_{n=1}^{4} \frac{b_{n}}{4 n-1}-\sum_{n=1}^{4} \frac{b_{n}}{2^{4 n-1}(4 n-1)}
$$

is

$$
\frac{\left|b_{5}\right|}{19}+\frac{\left|b_{5}\right|}{2^{19} \times 19} .
$$

Remark: Maple gives $L(f)=1.13 \ldots$, and an upper bound of the error committed when approximating $L(f)$ by the first five terms is 0.00144 .

Theorem 1 (Dominated Convergence Theorem). Let I be a real interval with endpoints a and b in $\overline{\mathbb{R}}$ (with $a<b$). Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a sequence of piecewise continuous functions on I such that:

- the sequence of functions $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges pointwise on I to a piecewise continuous function f,
- there exists a piecewise continuous function g on I such that

$$
\forall t \in I, \forall n \in \mathbb{N},\left|f_{n}(t)\right| \leq g(t)
$$

and, in the case where I is not a closed and bounded interval, the improper integral

$$
\int_{a}^{b} g(t) \mathrm{d} t
$$

converges (the domination condition).
Then

$$
\lim _{n \rightarrow+\infty} \int_{a}^{b}\left|f_{n}(t)-f(t)\right| \mathrm{d} t=0
$$

and in particular,

$$
\lim _{n \rightarrow+\infty} \int_{a}^{b} f_{n}(t) \mathrm{d} t=\int_{a}^{b} f(t) \mathrm{d} t
$$

and, in the case where I is not a closed and bounded interval, the improper integral on the right-hand side is absolutely convergent.
Exercise 2 (11.5 points). In this exercise, we work in \mathbb{R}^{2} with its standard dot product and with the standard Euclidean norm. The first two parts are independent from each other.

Part I - 4.5 points

1. Let q be the quadratic form defined by:

$$
\begin{array}{cc}
q: \quad \mathbb{R}^{2} & \longrightarrow \\
(x, y) & \longmapsto 3 x^{2}+2 x y+3 y^{2} .
\end{array}
$$

a) Determine an orthonormal basis \mathscr{B}^{\prime} in which the matrix of q is diagonal.
b) We define

$$
\mathscr{S}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\} .
$$

Let $u \in \mathscr{S}$. We denote by

$$
[u]_{\mathscr{B}^{\prime}}=\binom{x^{\prime}}{y^{\prime}}
$$

the coordinates of the vector u in the basis \mathscr{B}^{\prime}. Show that ${x^{\prime 2}}^{2}+{y^{\prime}}^{2}=1$ and deduce that $2 \leq q(u) \leq 4$.
c) Show that there exists $u_{m} \in \mathscr{S}$ such that $q\left(u_{m}\right)=2$ and that there exists $u_{M} \in \mathscr{S}$ such that $q\left(u_{M}\right)=4$. Deduce the value of $\max _{u \in \mathscr{S}} q(u)$ and the value of $\min _{u \in \mathscr{S}} q(u)$.
2. Let f be the mapping defined by:

$$
\begin{aligned}
f: \quad \mathbb{R}^{2} & \longrightarrow \\
(x, y) & \longmapsto \frac{2}{3}(x+y)^{3}+2(x+y)^{2}+(x-y)^{2} .
\end{aligned}
$$

a) Determine the critical points of f.
b) Show that f admits a unique local minimum, and that this local minimum is attained at a unique point $N \in \mathbb{R}^{2}$ that you will determine. Is this local minimum a global minimum of f on \mathbb{R}^{2} ?
c) Let q_{N} be the quadratic form, the matrix of which, in the standard basis of \mathbb{R}^{2} is the Hessian matrix $H_{N} f$ of f at the point N. Determine the value of $\max _{u \in \mathscr{S}} q_{N}(u)$ and the value of $\min _{u \in \mathscr{S}} q_{N}(u)$.
Part II - 3.5 points
Let $a, b \in \mathbb{R}$ and $R \in \mathbb{R}_{+}^{*}$. Let f be the mapping defined by:

$$
\begin{array}{ccc}
f: \begin{array}{c}
\mathbb{R} \\
\mathbb{R}^{2}
\end{array} \longrightarrow & \longrightarrow(x-a)^{2}+(y-b)^{2} .
\end{array}
$$

We define the circle \mathscr{C} centered at (a, b) of radius R :

$$
\mathscr{C}=\left\{(x, y) \in \mathbb{R}^{2} \mid f(x, y)=R^{2}\right\} .
$$

1. For what points $(x, y) \in \mathscr{C}$ do we have $\partial_{2} f(x, y)=0$? what do we observe for the tangent line to the circle \mathscr{C} at these points?
2. In this question and the next one, $\left(x_{0}, y_{0}\right) \in \mathscr{C}$ is such that $\partial_{2} f\left(x_{0}, y_{0}\right) \neq 0$.
a) Justify that there exists an open interval $I \subset \mathbb{R}$ such that $x_{0} \in I$, an open interval $J \subset \mathbb{R}$ such that $y_{0} \in J$ and a function $\psi: I \longrightarrow J$ of class C^{2} such that

$$
\forall(x, y) \in I \times J, \quad((x, y) \in \mathscr{C} \Longleftrightarrow y=\psi(x))
$$

b) What is the value of $\psi\left(x_{0}\right)$?
c) Show that

$$
\psi^{\prime}\left(x_{0}\right)=-\frac{x_{0}-a}{y_{0}-b}
$$

d) Show that

$$
\psi^{\prime \prime}\left(x_{0}\right)=-\frac{1+\psi^{\prime}\left(x_{0}\right)^{2}}{y_{0}-b}
$$

e) Deduce that

$$
R=\frac{\left(1+\psi^{\prime}\left(x_{0}\right)^{2}\right)^{3 / 2}}{\left|\psi^{\prime \prime}\left(x_{0}\right)\right|}
$$

3. Determine an equation of the tangent line to the circle \mathscr{C} at the point $\left(x_{0}, y_{0}\right)$.

The notion of curvature enables us to quantify how much the graph of a function of one variable recedes from its tangent line at a point. Let I be an real interval and let $h: I \longrightarrow \mathbb{R}$ be a function of class C^{2}. We admit that we can define the curvature of h at a point $t \in I$ by the number

$$
\frac{h^{\prime \prime}(t)}{\left(1+h^{\prime}(t)^{2}\right)^{3 / 2}} .
$$

The goal of the next part is to define a similar notion of curvature for the graph of a function of 2 variables.

Part III - 3.5 points
Let $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be a function of class C^{2}. Let $\left(x_{0}, y_{0}\right)$ be a critical point of f. Let $v=\left(v_{1}, v_{2}\right) \in \mathbb{R}^{2}$. We define the mapping

$$
\begin{aligned}
g_{v}: \mathbb{R} & \longrightarrow \\
& \longrightarrow \\
& \longmapsto f\left(x_{0}+t v_{1}, y_{0}+t v_{2}\right) .
\end{aligned}
$$

1. Compute $g_{v}^{\prime}(t)$ and $g_{v}^{\prime \prime}(t)$ in terms of the partial derivatives of f.
2. Let ρ be the mapping defined by

$$
\begin{aligned}
\rho: \mathbb{R}^{2} & \longrightarrow \\
v & \longmapsto \frac{\mathbb{R}}{g_{v}^{\prime \prime}(0)} \\
& \left(1+g_{v}^{\prime}(0)^{2}\right)^{3 / 2}
\end{aligned}
$$

Deduce from the previous questions a simple expression of $\rho(v)$. The number $\rho(v)$ is called the curvature of the function f in the direction $\left(x_{0}, y_{0}\right)$ at the critical point $\left(x_{0}, y_{0}\right)$.
3. Check that the mapping ρ is in fact the quadratic form the matrix of which in the standard basis of \mathbb{R}^{2} is the Hessian matrix of f at the point $\left(x_{0}, y_{0}\right)$.
4. Determine the maximal curvature $\max _{\|v\|=1} \rho(v)$ as well as the minimal curvature $\min _{\|v\|=1} \rho(v)$ of the function f defined in Part I at the point N as well as the directions in which they are attained.
5. Back to the general case. We define the Gaussian curvature of f at the critical point $\left(x_{0}, y_{0}\right)$ as the product of the eigenvalues of its Hessian matrix at the point $\left(x_{0}, y_{0}\right)$.
a) Justify that the Gaussian curvature is a real number.
b) Determine the sign of the Gaussian curvature of the functions f, given by the graphs below, at the critical point $(0,0)$, which is non-degenerate (that is, the Hessian matrix is invertible at the point $(0,0)$).

c) What is the value of the Gaussian curvature at the critical point $(0,0)$ of the function f given by the graph below?

