Romaric Pujol, romaric.pujol@insa-lyon.fr

Exercise 1.

1. The function ln is continuous on (0,1], hence the integral I is improper at 0. Let $X \in (0,1]$. Then:

$$I_X = \int_{X}^{1} \ln(t) dt = [t \ln(t) - t]_{t=X}^{t=1} = -1 - X \ln(X) + X.$$

Now, $\lim_{X\to 0^+} X \ln(X) = 0$, hence $\lim_{X\to 0^+} I_X = -1 \in \mathbb{R}$, hence the improper integral I is convergent and I = -1.

- 2. The function $t \mapsto e^{-t} \ln(t)$ is continuous on $(0, +\infty)$. Hence the integral J is improper at 0 and at $+\infty$.
 - Convergence at 0: since $e^{-t} \ln(t) \underset{t \to 0^*}{\sim} \ln(t) < 0$ and since, by Question 1, the improper integral

$$\int_0^1 \ln(t) \, \mathrm{d}t$$

is convergent, we conclude that J is convergent at 0.

• Convergence at $+\infty$: we know that $\lim_{t\to +\infty} t^2 e^{-t} \ln(t) = 0$, hence there exists A>1 such that

$$\forall t > A, \ 0 < t^2 e^{-t} \ln(t) < 1,$$

hence

$$\forall t > A, \ 0 < e^{-t} \ln(t) < \frac{1}{t^2}.$$

Since (by Riemann at $+\infty$ with $\alpha = 2 > 1$) the improper integral

$$\int_{1}^{\infty} \frac{\mathrm{d}t}{t^2}$$

converges at $+\infty$, we conclude, by the comparison test, that J converges at $+\infty$.

Hence J is a convergent integral.

- 3. The function $t \mapsto e^{-t} \ln(t) \cos(t)$ is continuous on $(0, +\infty)$, hence the integral K is improper at $+\infty$.
 - Convergence at 0: it is similar to the convergence at 0 of J: since $e^{-t} \ln(t) \cos(t) \underset{t \to 0^*}{\sim} \ln(t) < 0$, by the equivalent test, K converges at 0.
 - Convergence at $+\infty$: observe that

$$\forall t > 1, \ 0 < |e^{-t} \ln(t) \cos(t)| < e^{-t} \ln(t)$$

and since, by Question 2 the improper integral

$$\int_{1}^{+\infty} e^{-t} \ln(t) dt$$

is convergent at $+\infty$ we conclude, by the Comparison Test, that K is absolutely convergent at $+\infty$, hence K is convergent at $+\infty$.

Hence K is a convergent integral.

Exercise 2.

1. Let $p \in \mathbb{R}$ and $\omega \in \mathbb{R}_+^*$. The functions $t \mapsto \cos(\omega t) e^{-pt}$ and $t \mapsto \sin(\omega t) e^{-pt}$ are continuous on $[0, +\infty)$, hence the integrals I and J are improper at $+\infty$.

Let X > 0 and define

$$I_X = \int_0^X \cos(\omega t) e^{-pt} dt$$
 and $J_X = \int_0^X \sin(\omega t) e^{-pt} dt$.

Then,

$$I_X + iJ_X = \int_0^X \left(\cos(\omega t) + i\sin(\omega t)\right) e^{-pt} dt$$

$$= \int_0^X e^{i\omega t} e^{-pt} dt \qquad by Euler's Formula$$

$$= \int_0^X e^{(-p+i\omega)t} dt$$

$$= \left[\frac{e^{(-p+i\omega)t}}{-p+i\omega}\right]_{t=0}^{t=X} \qquad since -p + i\omega \neq 0$$

$$= \frac{e^{(-p+i\omega)X} - 1}{-p+i\omega}.$$

Now observe that since p > 0, one has $\left| e^{(-p+i\omega)X} \right| = e^{-pX} \underset{X \to +\infty}{\longrightarrow} 0$ hence

$$\lim_{X \to +\infty} (I_X + iJ_X) = -\frac{1}{-p + i\omega} = \frac{p + i\omega}{p^2 + \omega^2}.$$

Since I_X and J_X are real, we conclude that

$$\lim_{X \to +\infty} I_X = \frac{p}{p^2 + \omega^2} \quad \text{and} \quad \lim_{X \to +\infty} J_X = \frac{\omega}{p^2 + \omega^2},$$

hence I and J converge and

$$I = \frac{p}{p^2 + \omega^2}$$
 and $J = \frac{\omega}{p^2 + \omega^2}$,

- 2. Let $\alpha \in \mathbb{R}$. The function $t \mapsto \frac{e^{-t} 1}{t^{\alpha}}$ is continuous on $(0, +\infty)$ hence the integral I_{α} is improper at 0 and at $+\infty$.
 - Convergence at 0: we have the following equivalent:

$$\frac{\mathrm{e}^{-t}-1}{t^{\alpha}} \underset{t \to 0^+}{\sim} \frac{-t}{t^{\alpha}} = -\frac{1}{t^{\alpha-1}} < 0,$$

and we know, by Riemann, that the improper integral

$$\int_0^1 \frac{\mathrm{d}t}{t^{\alpha-1}}$$

converges (at 0) if and only if $\alpha - 1 < 1$ i.e., $\alpha < 2$. Hence, by the equivalent test, the improper integral I_{α} converges at 0 if and only if $\alpha < 2$.

• Convergence at $+\infty$: since $e^{-t} - 1 \xrightarrow[t \to +\infty]{} -1$, we have the following equivalent:

$$\frac{e^{-t} - 1}{t^{\alpha}} \underset{\to +\infty}{\sim} -\frac{1}{t^{\alpha}} < 0,$$

and we know, by Riemann, that the improper integral

$$\int_{1}^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}}$$

converges (at $+\infty$) if and only if $\alpha > 1$. Hence, by the equivalent test, the improper integral I_{α} converges at $+\infty$ if and only if $\alpha > 1$.

Conclusion: the improper integral I_{α} converges if and only if $1 < \alpha < 2$.

Exercise 3.

1. Let φ be the linear mapping

$$\varphi: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
$$(x,y) \longmapsto (2x-y,x-y).$$

Then

$$[\varphi]_{\mathrm{std}} = \begin{pmatrix} 2 & -1 \\ 1 & -1 \end{pmatrix},$$

and $\det \varphi = -1 \neq 0$ hence φ is invertible. It is clear that

$$\forall u \in \mathbb{R}^2, \ N(u) = \|\varphi(u)\|_1,$$

hence N is a norm on \mathbb{R}^2 .

2. Moreover, for $u \in \mathbb{R}^2$,

$$\begin{split} u \in B &\iff N(u) \leq 1 \\ &\iff \left\| \varphi(u) \right\|_1 \leq 1 \\ &\iff \varphi(u) \in B_{\|\cdot\|_1} \\ &\iff u \in \varphi^{-1}(B_{\|\cdot\|_1}) \end{split}$$

hence $B = \varphi^{-1}(B_{\|\cdot\|_1})$. Now,

$$[\varphi^{-1}]_{\mathrm{std}} = \begin{pmatrix} 1 & -1 \\ 1 & -2 \end{pmatrix},$$

and we can understand graphically how B is obtained from $B_{\|\cdot\|_1}$: the ball $B_{\|\cdot\|_1}$ consists of the square with vertices (0,1), (1,0), (-1,0) and (0,-1), hence the ball B consists of the parallelogram obtained by applying φ^{-1} to this square. To obtain it explicitly, we only need to determine the image of the two vertices (0,1) and (1,0) by φ , and use the fact that B is symmetric with respect to (0,0):

$$\varphi^{-1}((1,0)) = (1,1),$$
 $\varphi^{-1}((0,1)) = (-1,-2).$

We hence obtain the ball B shown on Figure 3.

Exercise 4.

- 1. Let $f_0 \in E$.
 - a) Let $h \in E$. Then

$$\left| \varphi(h) \right| = \left| \int_0^1 f_0(t)h(t) \, \mathrm{d}t \right| \le \int_0^1 \left| f_0(t) \right| \left| h(t) \right| \, \mathrm{d}t \le \int_0^1 \left| f_0(t) \right| \|h\|_{\infty} \, \mathrm{d}t = \|h\|_{\infty} \int_0^1 \left| f_0(t) \right| \, \mathrm{d}t = \|h\|_{\infty} \|f_0\|_1.$$

Moreover,

$$||f_0||_1 = \int_0^1 |f_0(t)| dt \le \int_0^1 ||f_0||_{\infty} dt = ||f_0||_{\infty},$$

hence $||f_0||_1 ||h||_{\infty} \le ||f_0||_{\infty} ||h||_{\infty}$.

b) We notice that φ is a linear mapping, hence φ is continuous if and only if φ is continuous at 0_E . Now, from the previous inequality and the Squeeze Theorem, we conclude that:

$$\lim_{\|h\|_{\infty} \to 0} \left| \varphi(h) \right| = 0.$$

2. Let $f_0 \in E$ and let's show that Ψ is differentiable at f_0 and determine $d_{f_0}\Psi$: let $h \in E$. Then:

$$\Psi(f_0 + h) = \int_0^1 \left(f_0(t) + h(t) \right)^2 \mathrm{d}t = \int_0^1 \left(f_0(t)^2 + 2f_0(t)h(t) + h(t)^2 \right) \mathrm{d}t = \int_0^1 f_0(t)^2 \, \mathrm{d}t + 2\int_0^1 f_0(t)h(t) \, \mathrm{d}t + \int_0^1 h(t)^2 \, \mathrm{d}t = \Psi(f_0) + 2\int_0^1 f_0(t)h(t) \, \mathrm{d}t + \int_0^1 h(t)^2 \, \mathrm{d}t = \frac{1}{2}\int_0^1 f_0(t)h(t) \, \mathrm{d}t + \int_0^1 h(t)^2 \, \mathrm{d}t = \frac{1}{2}\int_0^1 f_0(t)h(t) \, \mathrm{d}t + \int_0^1 h(t)^2 \, \mathrm{d}t = \frac{1}{2}\int_0^1 f_0(t)h(t) \, \mathrm{d}t + \int_0^1 h(t)^2 \, \mathrm{d}t = \frac{1}{2}\int_0^1 f_0(t)h(t) \, \mathrm{d}t + \int_0^1 h(t)^2 \, \mathrm{d}t = \frac{1}{2}\int_0^1 f_0(t)h(t) \, \mathrm{d}t + \int_0^1 h(t)^2 \, \mathrm{d}t = \frac{1}{2}\int_0^1 f_0(t)h(t) \, \mathrm{d}t + \int_0^1 h(t)^2 \, \mathrm{d}t = \frac{1}{2}\int_0^1 f_0(t)h(t) \, \mathrm{d}t + \int_0^1 h(t)^2 \, \mathrm{d}t = \frac{1}{2}\int_0^1 f_0(t)h(t) \, \mathrm{d}t + \int_0^1 h(t)^2 \, \mathrm{d}t = \frac{1}{2}\int_0^1 f_0(t)h(t) \, \mathrm{d}t + \int_0^1 h(t)^2 \, \mathrm{d}t = \frac{1}{2}\int_0^1 f_0(t)h(t) \, \mathrm{d}t + \int_0^1 h(t)^2 \, \mathrm{d}t = \frac{1}{2}\int_0^1 f_0(t)h(t) \, \mathrm{d}t + \int_0^1 h(t)^2 \, \mathrm{d}t = \frac{1}{2}\int_0^1 f_0(t)h(t) \, \mathrm{d}t + \int_0^1 h(t)^2 \, \mathrm{d}t = \frac{1}{2}\int_0^1 f_0(t)h(t) \, \mathrm{d}t + \int_0^1 h(t)^2 \, \mathrm{d}t = \frac{1}{2}\int_0^1 f_0(t)h(t) \, \mathrm{d}t + \int_0^1 h(t)^2 \, \mathrm{d}t = \frac{1}{2}\int_0^1 f_0(t)h(t) \, \mathrm{d}t + \int_0^1 h(t)^2 \, \mathrm{d}t = \frac{1}{2}\int_0^1 f_0(t)h(t) \, \mathrm{d}t + \int_0^1 h(t)^2 \, \mathrm{d}t = \frac{1}{2}\int_0^1 f_0(t)h(t) \, \mathrm{d}t + \int_0^1 h(t)^2 \, \mathrm{d}t = \frac{1}{2}\int_0^1 f_0(t)h(t) \, \mathrm{d}t + \int_0^1 h(t)^2 \, \mathrm{d}t = \frac{1}{2}\int_0^1 f_0(t)h(t) \, \mathrm{d}t + \int_0^1 h(t)^2 \, \mathrm{d}t = \frac{1}{2}\int_0^1 f_0(t)h(t) \, \mathrm{d}t + \int_0^1 h(t)^2 \, \mathrm{d}t = \frac{1}{2}\int_0^1 f_0(t)h(t) \, \mathrm{d}t + \int_0^1 h(t) \, \mathrm{d}t + \int_0$$

where φ is the linear mapping of the previous question. Now we know (we already showed it in the previous question) that: $\|h^2\|_1 \leq \|h^2\|_{\infty}$, and $\|h^2\|_{\infty} = \|h\|_{\infty}^2$. Hence

$$\frac{\|h^2\|_1}{\|h\|_\infty} \le \|h\|_\infty \underset{\|h\|_\infty \to 0}{\longrightarrow} 0.$$

Since φ is linear and continuous, we conclude that Ψ is differentiable at f_0 and that

$$\mathrm{d}_{f_0}\Psi:\ E\longrightarrow \mathbb{R}$$

$$h\longmapsto 2\int_0^1 f_0(t)h(t)\,\mathrm{d}t.$$

Figure 1. Ball B of Exercise 3

Exercise 5. Let $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$. Then

$$\left|f(x,y)\right| = \frac{|xy|^{3/2}}{x^2 + 2y^2} \leq \frac{|xy|^{3/2}}{x^2 + y^2} \leq \frac{\left(\left\|(x,y)\right\|_2 \left\|(x,y)\right\|_2\right)^{3/2}}{\left\|(x,y)\right\|_2^2} = \left\|(x,y)\right\|_2 \underset{\|(x,y)\|_2 \to 0}{\longrightarrow} 0.$$

Hence $\lim_{(x,y)\to(0,0)} f(x,y) = 0.$

Exercise 6.

- 1. Let $u \in E$ such that N(u) = 0. Then we must have, e.g., $N_2(u) = 0$ and hence, since N_2 is a norm on E we must have $u = 0_E$.
 - Let $u, v \in E$. Then since N_1 and N_2 are norms on E we have

$$N_1(u+v) \le N_1(u) + N_1(v)$$
 and $N_2(u+v) \le N_2(u) + N_2(v)$

Hence, by the Property (*) we also have $N(u+v) \le \max\{N_1(u)+N_1(v),N_2(u)+N_2(v)\} \le \max\{N_1(u),N_2(u)\}+\max\{N_1(v),N_2(v)\}$.

• Let $u \in E$ and $\lambda \in \mathbb{R}$. Then since N_1 and N_2 are norms on E we have

$$N_1(\lambda u) = |\lambda| N_1(u)$$
 and $N_2(\lambda u) = |\lambda| N_2(u)$.

Hence $\max\{N_1(\lambda u), N_2(\lambda u)\} = \max\{|\lambda|N_1(u), |\lambda|N_2(u)\} = |\lambda|\max\{N_1(u), N_2(u)\} = |\lambda|N(u).$

2. Let $u \in E$. Then

$$u \in B \iff N(u) \le 1$$

 $\iff \max\{N_1(u), N_2(u)\} \le 1$
 $\iff N_1(u) \le 1 \text{ and } N_2(u) \le 1$
 $\iff u \in B_1 \text{ and } u \in B_2$
 $\iff u \in B_1 \cap B_2.$

Hence $B = B_1 \cap B_2$.

3. a) The ball B is the intersection of two squares, as shown on Figure 2.

Figure 2. Ball B of Question 3a of Exercise 6

- b) i) The ball B is the intersection of the ellipse and the parallelogram, as shown on Figure 3(b)i.
 - ii) The set B_P is the union of the ellipse and the parallelogram, as shown on Figure 3(b)ii. We notice on the figure that this set is not convex, hence P cannot be a norm on \mathbb{R}^2 . Hence, in general, P is not a norm on E.

Figure 3. The ball B of Question 3(b)i of Exercise 6

Figure 4. The set B_P of Question 3(b)ii of Exercise 6