Exercise 1.

1. The function \ln is continuous on $(0,1]$, hence the integral I is improper at 0 . Let $X \in(0,1]$. Then:

$$
I_{X}=\int_{X}^{1} \ln (t) \mathrm{d} t=[t \ln (t)-t]_{t=X}^{t=1}=-1-X \ln (X)+X
$$

Now, $\lim _{X \rightarrow 0^{+}} X \ln (X)=0$, hence $\lim _{X \rightarrow 0^{+}} I_{X}=-1 \in \mathbb{R}$, hence the improper integral I is convergent and $I=-1$.
2. The function $t \mapsto \mathrm{e}^{-t} \ln (t)$ is continuous on $(0,+\infty)$. Hence the integral J is improper at 0 and at $+\infty$.

- Convergence at 0 : since $\mathrm{e}^{-t} \ln (t) \underset{t \rightarrow 0^{*}}{\sim} \ln (t)<0$ and since, by Question 1 , the improper integral

$$
\int_{0}^{1} \ln (t) \mathrm{d} t
$$

is convergent, we conclude that J is convergent at 0 .

- Convergence at $+\infty$: we know that $\lim _{t \rightarrow+\infty} t^{2} \mathrm{e}^{-t} \ln (t)=0$, hence there exists $A>1$ such that

$$
\forall t>A, 0<t^{2} \mathrm{e}^{-t} \ln (t)<1,
$$

hence

$$
\forall t>A, 0<\mathrm{e}^{-t} \ln (t)<\frac{1}{t^{2}} .
$$

Since (by Riemann at $+\infty$ with $\alpha=2>1$) the improper integral

$$
\int_{1}^{\infty} \frac{\mathrm{d} t}{t^{2}}
$$

converges at $+\infty$, we conclude, by the comparison test, that J converges at $+\infty$.
Hence J is a convergent integral
3. The function $t \mapsto \mathrm{e}^{-t} \ln (t) \cos (t)$ is continuous on $(0,+\infty)$, hence the integral K is improper at $+\infty$.

- Convergence at 0 : it is similar to the convergence at 0 of J : since $\mathrm{e}^{-t} \ln (t) \cos (t) \underset{t \rightarrow 0^{*}}{\sim} \ln (t)<0$, by the equivalent test, K converges at 0 .
- Convergence at $+\infty$: observe that

$$
\forall t>1,0 \leq\left|\mathrm{e}^{-t} \ln (t) \cos (t)\right| \leq \mathrm{e}^{-t} \ln (t)
$$

and since, by Question 2 the improper integral

$$
\int_{1}^{+\infty} \mathrm{e}^{-t} \ln (t) \mathrm{d} t
$$

is convergent at $+\infty$ we conclude, by the Comparison Test, that K is absolutely convergent at $+\infty$, hence K is convergent at $+\infty$.

Hence K is a convergent integral.

Exercise 2.

1. Let $p \in \mathbb{R}$ and $\omega \in \mathbb{R}_{+}^{*}$. The functions $t \mapsto \cos (\omega t) \mathrm{e}^{-p t}$ and $t \mapsto \sin (\omega t) \mathrm{e}^{-p t}$ are continuous on $[0,+\infty)$, hence the integrals I and J are improper at $+\infty$.
Let $X>0$ and define

$$
I_{X}=\int_{0}^{X} \cos (\omega t) \mathrm{e}^{-p t} \mathrm{~d} t \quad \text { and } \quad J_{X}=\int_{0}^{X} \sin (\omega t) \mathrm{e}^{-p t} \mathrm{~d} t .
$$

Then,

$$
\begin{aligned}
I_{X}+i J_{X} & =\int_{0}^{X}(\cos (\omega t)+i \sin (\omega t)) \mathrm{e}^{-p t} \mathrm{~d} t \\
& =\int_{0}^{X} \mathrm{e}^{i \omega t} \mathrm{e}^{-p t} \mathrm{~d} t \quad \text { by Euler's Formula } \\
& =\int_{0}^{X} \mathrm{e}^{(-p+i \omega) t} \mathrm{~d} t \\
& =\left[\frac{\mathrm{e}^{(-p+i \omega) t}}{-p+i \omega}\right]_{t=0}^{t=X} \quad \text { since }-p+i \omega \neq 0 \\
& =\frac{\mathrm{e}^{(-p+i \omega) X}-1}{-p+i \omega}
\end{aligned}
$$

Now observe that since $p>0$, one has $\left|\mathrm{e}^{(-p+i \omega) X}\right|=\mathrm{e}^{-p X} \underset{X \rightarrow+\infty}{\longrightarrow} 0$ hence

$$
\lim _{x \rightarrow+\infty}\left(I_{X}+i J_{X}\right)=-\frac{1}{-p+i \omega}=\frac{p+i \omega}{p^{2}+\omega^{2}}
$$

Since I_{X} and J_{X} are real, we conclude that

$$
\lim _{x \rightarrow+\infty} I_{X}=\frac{p}{p^{2}+\omega^{2}} \quad \text { and } \quad \lim _{x \rightarrow+\infty} J_{X}=\frac{\omega}{p^{2}+\omega^{2}},
$$

hence I and J converge and

$$
I=\frac{p}{p^{2}+\omega^{2}} \quad \text { and } \quad J=\frac{\omega}{p^{2}+\omega^{2}},
$$

2. Let $\alpha \in \mathbb{R}$. The function $t \mapsto \frac{\mathrm{e}^{-t}-1}{t^{\alpha}}$ is continuous on $(0,+\infty)$ hence the integral I_{α} is improper at 0 and at $+\infty$.

- Convergence at 0 : we have the following equivalent:

$$
\frac{\mathrm{e}^{-t}-1}{t^{\alpha}} \underset{t \rightarrow 0^{+}}{\sim} \frac{-t}{t^{\alpha}}=-\frac{1}{t^{\alpha-1}}<0
$$

and we know, by Riemann, that the improper integral

$$
\int_{0}^{1} \frac{\mathrm{~d} t}{t^{\alpha-1}}
$$

converges (at 0) if and only if $\alpha-1<1$ i.e., $\alpha<2$. Hence, by the equivalent test, the improper integral I_{α} converges at 0 if and only if $\alpha<2$.

- Convergence at $+\infty$: since $\mathrm{e}^{-t}-1 \underset{t \rightarrow+\infty}{\longrightarrow}-1$, we have the following equivalent:

$$
\frac{\mathrm{e}^{-t}-1}{t^{\alpha}} \underset{\rightarrow+\infty}{\sim}-\frac{1}{t^{\alpha}}<0
$$

and we know, by Riemann, that the improper integral

$$
\int_{1}^{+\infty} \frac{\mathrm{d} t}{t^{\alpha}}
$$

converges (at $+\infty$) if and only if $\alpha>1$. Hence, by the equivalent test, the improper integral I_{α} converges at $+\infty$ if and only if $\alpha>1$.

Conclusion: the improper integral I_{α} converges if and only if $1<\alpha<2$.

Exercise 3.

1. Let φ be the linear mapping

$$
\begin{aligned}
\varphi: & \mathbb{R}^{2} \\
(x, y) & \longmapsto(2 x-y, x-y) .
\end{aligned}
$$

Then

$$
[\varphi]_{\mathrm{std}}=\left(\begin{array}{ll}
2 & -1 \\
1 & -1
\end{array}\right)
$$

and $\operatorname{det} \varphi=-1 \neq 0$ hence φ is invertible. It is clear that

$$
\forall u \in \mathbb{R}^{2}, N(u)=\|\varphi(u)\|_{1}
$$

hence N is a norm on \mathbb{R}^{2}.
2. Moreover, for $u \in \mathbb{R}^{2}$,

$$
\begin{aligned}
u \in B & \Longleftrightarrow N(u) \leq 1 \\
& \Longleftrightarrow\|\varphi(u)\|_{1} \leq 1 \\
& \Longleftrightarrow \varphi(u) \in B_{\|\cdot\|_{1}} \\
& \Longleftrightarrow u \in \varphi^{-1}\left(B_{\|\cdot\|_{1}}\right)
\end{aligned}
$$

hence $B=\varphi^{-1}\left(B_{\|\cdot\|_{1}}\right)$. Now,

$$
\left[\varphi^{-1}\right]_{\mathrm{std}}=\left(\begin{array}{ll}
1 & -1 \\
1 & -2
\end{array}\right)
$$

and we can understand graphically how B is obtained from $B_{\|\cdot\|_{1}}$: the ball $B_{\|\cdot\|_{1}}$ consists of the square with vertices $(0,1),(1,0),(-1,0)$ and $(0,-1)$, hence the ball B consists of the parallelogram obtained by applying φ^{-1} to this square. To obtain it explicitly, we only need to determine the image of the two vertices $(0,1)$ and $(1,0)$ by φ, and use the fact that B is symmetric with respect to $(0,0)$:

$$
\varphi^{-1}((1,0))=(1,1), \quad \quad \varphi^{-1}((0,1))=(-1,-2)
$$

We hence obtain the ball B shown on Figure 3 .

Exercise 4.

1. Let $f_{0} \in E$.
a) Let $h \in E$. Then

$$
|\varphi(h)|=\left|\int_{0}^{1} f_{0}(t) h(t) \mathrm{d} t\right| \leq \int_{0}^{1}\left|f_{0}(t)\left\|h(t)\left|\mathrm{d} t \leq \int_{0}^{1}\right| f_{0}(t)\left|\|h\|_{\infty} \mathrm{d} t=\|h\|_{\infty} \int_{0}^{1}\right| f_{0}(t) \mid \mathrm{d} t=\right\| h\left\|_{\infty}\right\| f_{0} \|_{1}\right.
$$

Moreover,

$$
\left\|f_{0}\right\|_{1}=\int_{0}^{1}\left|f_{0}(t)\right| \mathrm{d} t \leq \int_{0}^{1}\left\|f_{0}\right\|_{\infty} \mathrm{d} t=\left\|f_{0}\right\|_{\infty}
$$

hence $\left\|f_{0}\right\|_{1}\|h\|_{\infty} \leq\left\|f_{0}\right\|_{\infty}\|h\|_{\infty}$.
b) We notice that φ is a linear mapping, hence φ is continuous if and only if φ is continuous at 0_{E}. Now, from the previous inequality and the Squeeze Theorem, we conclude that:

$$
\lim _{\|h\|_{\infty} \rightarrow 0}|\varphi(h)|=0
$$

2. Let $f_{0} \in E$ and let's show that Ψ is differentiable at f_{0} and determine $\mathrm{d}_{f_{0}} \Psi$: let $h \in E$. Then:

$$
\Psi\left(f_{0}+h\right)=\int_{0}^{1}\left(f_{0}(t)+h(t)\right)^{2} \mathrm{~d} t=\int_{0}^{1}\left(f_{0}(t)^{2}+2 f_{0}(t) h(t)+h(t)^{2}\right) \mathrm{d} t=\int_{0}^{1} f_{0}(t)^{2} \mathrm{~d} t+2 \int_{0}^{1} f_{0}(t) h(t) \mathrm{d} t+\int_{0}^{1} h(t)^{2} \mathrm{~d} t=\Psi\left(f_{0}\right)
$$

where φ is the linear mapping of the previous question. Now we know (we already showed it in the previous question) that: $\left\|h^{2}\right\|_{1} \leq\left\|h^{2}\right\|_{\infty}$, and $\left\|h^{2}\right\|_{\infty}=\|h\|_{\infty}^{2}$. Hence

$$
\frac{\left\|h^{2}\right\|_{1}}{\|h\|_{\infty}} \leq\|h\|_{\infty} \underset{\|h\|_{\infty} \rightarrow 0}{\longrightarrow} 0
$$

Since φ is linear and continuous, we conclude that Ψ is differentiable at f_{0} and that

$$
\begin{array}{rl}
\mathrm{d}_{f_{0}} \Psi: E & \mathbb{R} \\
h & \longmapsto 2 \int_{0}^{1} f_{0}(t) h(t) \mathrm{d} t .
\end{array}
$$

Figure 1. Ball B of Exercise 3

Exercise 5. Let $(x, y) \in \mathbb{R}^{2} \backslash\{(0,0)\}$. Then

$$
|f(x, y)|=\frac{|x y|^{3 / 2}}{x^{2}+2 y^{2}} \leq \frac{|x y|^{3 / 2}}{x^{2}+y^{2}} \leq \frac{\left(\|(x, y)\|_{2}\|(x, y)\|_{2}\right)^{3 / 2}}{\|(x, y)\|_{2}^{2}}=\|(x, y)\|_{2} \underset{\|(x, y)\|_{2} \rightarrow 0}{ } 0
$$

Hence $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0$.

Exercise 6.

1. - Let $u \in E$ such that $N(u)=0$. Then we must have, e.g., $N_{2}(u)=0$ and hence, since N_{2} is a norm on E we must have $u=0_{E}$.

- Let $u, v \in E$. Then since N_{1} and N_{2} are norms on E we have

$$
N_{1}(u+v) \leq N_{1}(u)+N_{1}(v) \quad \text { and } \quad N_{2}(u+v) \leq N_{2}(u)+N_{2}(v)
$$

Hence, by the Property $(*)$ we also have $N(u+v) \leq \max \left\{N_{1}(u)+N_{1}(v), N_{2}(u)+N_{2}(v)\right\} \leq \max \left\{N_{1}(u), N_{2}(u)\right\}+$ $\max \left\{N_{1}(v), N_{2}(v)\right\}$.

- Let $u \in E$ and $\lambda \in \mathbb{R}$. Then since N_{1} and N_{2} are norms on E we have

$$
N_{1}(\lambda u)=|\lambda| N_{1}(u) \quad \text { and } \quad N_{2}(\lambda u)=|\lambda| N_{2}(u) .
$$

Hence $\max \left\{N_{1}(\lambda u), N_{2}(\lambda u)\right\}=\max \left\{|\lambda| N_{1}(u),|\lambda| N_{2}(u)\right\}=|\lambda| \max \left\{N_{1}(u), N_{2}(u)\right\}=|\lambda| N(u)$.
2. Let $u \in E$. Then

$$
\begin{aligned}
u \in B & \Longleftrightarrow N(u) \leq 1 \\
& \Longleftrightarrow \max \left\{N_{1}(u), N_{2}(u)\right\} \leq 1 \\
& \Longleftrightarrow N_{1}(u) \leq 1 \text { and } N_{2}(u) \leq 1 \\
& \Longleftrightarrow u \in B_{1} \text { and } u \in B_{2} \\
& \Longleftrightarrow u \in B_{1} \cap B_{2} .
\end{aligned}
$$

Hence $B=B_{1} \cap B_{2}$.
3. a) The ball B is the intersection of two squares, as shown on Figure 2 .

Figure 2. Ball B of Question 3a of Exercise 6
b) i) The ball B is the intersection of the ellipse and the parallelogram, as shown on Figure 3(b)i
ii) The set B_{P} is the union of the ellipse and the parallelogram, as shown on Figure 3(b)ii We notice on the figure that this set is not convex, hence P cannot be a norm on \mathbb{R}^{2}.
Hence, in general, P is not a norm on E.

Figure 3. The ball B of Question $3(\mathrm{~b}) \mathrm{i}$ of Exercise 6

Figure 4. The set B_{P} of Question $3(\mathrm{~b}) \mathrm{ii}$ of Exercise 6

