No documents, no calculators, no cell phones or electronic devices allowed but you may keep your pet blobfish for moral support.
All your answers must be fully justified, unless noted otherwise.

Exercise 1. Don't forget to explicitly specify the points where the improper integrals are improper!

1. Show that the following improper integral converges and compute its value:

$$
I=\int_{0}^{1} \ln (t) \mathrm{d} t .
$$

2. Show that the following improper integral converges:

$$
J=\int_{0}^{+\infty} \mathrm{e}^{-t} \ln (t) \mathrm{d} t
$$

3. Deduce that the following improper integral converges:

$$
K=\int_{0}^{+\infty} \mathrm{e}^{-t} \ln (t) \cos (t) \mathrm{d} t .
$$

Exercise 2. The two questions of this exercise are independent from each other:

1. Let $p, \omega \in \mathbb{R}_{+}^{*}$. Show that the following improper integrals are convergent and determine their values:

$$
I=\int_{0}^{+\infty} \cos (\omega t) \mathrm{e}^{-p t} \mathrm{~d} t \quad \text { and } \quad J=\int_{0}^{+\infty} \sin (\omega t) \mathrm{e}^{-p t} \mathrm{~d} t .
$$

Hint: you may want to use complex numbers and compute $I+i J$.
2. Let $\alpha \in \mathbb{R}$. Determine the values of α for which the following improper integral is convergent:

$$
I_{\alpha}=\int_{0}^{+\infty} \frac{\mathrm{e}^{-t}-1}{t^{\alpha}} \mathrm{d} t .
$$

Exercise 3. Let

$$
\begin{array}{ccc}
N: & \mathbb{R} \\
(x, y) & \longmapsto|2 x-y|+|x-y| .
\end{array}
$$

1. Show that N is a norm on \mathbb{R}^{2}.
2. Plot the closed unit ball B of N.

Exercise 4. Let $E=C([0,1], \mathbb{R})$ be the vector space of continuous functions on $[0,1]$. We equip E with the norm $\|\cdot\|_{\infty}$.

1. Let $f_{0} \in E$ and define the mapping

$$
\begin{aligned}
\varphi: & E \longrightarrow \mathbb{R} \\
h & \longmapsto \int_{0}^{1} f_{0}(t) h(t) \mathrm{d} t .
\end{aligned}
$$

a) Show that

$$
\forall h \in E,|\varphi(h)| \leq\left\|f_{0}\right\|_{1}\|h\|_{\infty} \leq\left\|f_{0}\right\|_{\infty}\|h\|_{\infty} .
$$

b) Deduce that φ is continuous.
2. We define the mapping

$$
\begin{array}{rl}
\Psi: E & \mathbb{R} \\
& \longmapsto \longmapsto \int_{0}^{1} f(t)^{2} \mathrm{~d} t .
\end{array}
$$

Show that Ψ is differentiable on E, and determine the differential $\mathrm{d}_{f_{0}} \Psi$ of Ψ at a point $f_{0} \in E$.

Exercise 5. We define the function f as

$$
\begin{aligned}
& f: \mathbb{R}^{2} \backslash\{(0,0)\} \longrightarrow \begin{array}{|}
\mathbb{R} \\
(x, y) & \longmapsto \frac{|x y|^{3 / 2}}{x^{2}+2 y^{2}} .
\end{array} . \\
&
\end{aligned}
$$

Show that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ exists and determine its value.
Exercise 6. In a question of this exercise, the following result (that you don't need to justify) may be useful:
(*) $\quad \forall a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2} \in \mathbb{R},\left(a_{1} \leq b_{1}+c_{1}\right.$ and $\left.a_{2} \leq b_{2}+c_{2} \Longrightarrow \max \left\{a_{1}, a_{2}\right\} \leq \max \left\{b_{1}, b_{2}\right\}+\max \left\{c_{1}, c_{2}\right\}\right)$.
Let E be a real vector space and let N_{1} and N_{2} be two norms on E. We denote by B_{1} and B_{2} the closed unit balls of N_{1} and N_{2} respectively.
We define the mappings N and P on E as:

$$
\begin{aligned}
& \begin{array}{rlr}
N: & E \longrightarrow \stackrel{\mathbb{R}_{+}}{ } \\
& u & \longmapsto \max \left\{N_{1}(u), N_{2}(u)\right\}
\end{array} \\
& \text { and } \quad P: E \longrightarrow \quad \mathbb{R}_{+} \\
& u \longmapsto \min \left\{N_{1}(u), N_{2}(u)\right\} .
\end{aligned}
$$

1. Show that N is a norm on E.
2. Explain how the closed unit ball B of N is obtained from B_{1} and B_{2}.
3. Explain how the set

$$
B_{P}=\{u \in E \mid P(u) \leq 1\}
$$

is obtained from B_{1} and B_{2}.
4. a) Plot the closed unit ball B of N in the case where $N_{1}=\frac{1}{\sqrt{2}}\|\cdot\|_{1}$ and $N_{2}=\|\cdot\|_{\infty}$.
b) On Figure 1 we have represented two (closed) sets B_{1} and B_{2} in \mathbb{R}^{2}, that correspond to two unit balls of norms N_{1} and N_{2} respectively.

Figure 1 - Balls B_{1} (the parallelogram) and B_{2} (the ellipse) of Question 4 b of Exercise 6
i) Plot the closed unit ball B of N.
ii) Plot the set B_{P}. Conclude that, in general, P is not a norm on E.

