Exercise 1. We know that

$$
\mathrm{e}^{x} \underset{x \rightarrow 0}{=} 1+x+\frac{x^{2}}{2}+o\left(x^{2}\right)
$$

hence, since $(-1)^{n} / n^{\alpha} \underset{n \rightarrow+\infty}{\longrightarrow} 0$,

$$
\exp \left(\frac{(-1)^{n}}{n^{\alpha}}\right)-1 \underset{n \rightarrow+\infty}{=} \frac{(-1)^{n}}{n^{\alpha}}+\frac{1}{n^{2 \alpha}}+o\left(\frac{1}{n^{2}}\right) .
$$

We can write the general term of the series as

$$
\forall n \in \mathbb{N}^{*}, \exp \left(\frac{(-1)^{n}}{n^{\alpha}}\right)-1=v_{n}+w_{n}
$$

with

$$
\forall n \in \mathbb{N}^{*}, v_{n}=\frac{(-1)^{n}}{n^{\alpha}}, w_{n}=\exp \left(\frac{(-1)^{n}}{n^{\alpha}}\right)-1-v_{n}
$$

Now, we know that the series $\sum_{n} v_{n}$ converges (it's an alternating Riemann series), and since

$$
w_{n} \underset{n \rightarrow+\infty}{=} \frac{1}{n^{2 \alpha}}+o\left(\frac{1}{n^{2 \alpha}}\right) \underset{n \rightarrow+\infty}{\sim} \frac{1}{n^{2 \alpha}}>0
$$

we conclude that the series $\sum_{n} w_{n}$ converges if and only if $2 \alpha>1$, i.e., if and only if $\alpha>1 / 2$.
We know that the sum of a convergent series and a divergent series yields a divergent series, and that the sum of two convergent series yields a convergent one.
Hence, the series converges if and only if $\alpha>1 / 2$.

Exercise 2.

1.

$$
\frac{n}{1+n^{3}} \underset{n \rightarrow+\infty}{\sim} \frac{1}{n^{2}}>0
$$

and by Riemann (with $\alpha=2>1$), the series $\sum_{n} 1 / n^{2}$ converges. Hence, by the equivalent test, the series $\sum_{n} n /\left(1+n^{3}\right)$ converges.
2. Let $t \in(0,+\infty)$. Since $1+t^{3}>t^{3}>0$,

$$
\frac{1}{1+t^{3}}<\frac{1}{t^{3}}
$$

and multiplying by $t>0$ yields the first inequality.
Let $N \in \mathbb{N}^{*}$ and let $t \in[N+1,+\infty)$. Then

$$
\frac{t}{1+t^{3}}-\frac{1}{\left(1+\frac{1}{(N+1)^{3}}\right) t^{2}}=\frac{\left(1+\frac{1}{(N+1)^{3}}\right) t^{3}-1-t^{3}}{t^{2}\left(1+\frac{1}{(N+1)^{2}}\right) t^{2}}=\frac{\frac{t^{3}}{(N+1)^{3}}-1}{t^{2}\left(1+\frac{1}{(N+1)^{2}}\right) t^{2}} \geq 0
$$

3 . Let $N \geq 2$. Define the function

$$
\begin{aligned}
f:[N,+\infty) & \longrightarrow \frac{\mathbb{R}}{} \\
t & \longmapsto \frac{t}{1+t^{3}} .
\end{aligned}
$$

For $t \in[N,+\infty)$,

$$
f^{\prime}(t)=\frac{1-2 t^{3}}{\left(1+t^{3}\right)^{2}}<0
$$

since $t \geq N \geq 1$, hence the function f is decreasing: we can use the integral comparison test, and we obtain:

$$
\frac{1}{1+\frac{1}{(N+1)^{3}}} \int_{N+1}^{+\infty} \frac{\mathrm{d} t}{t^{2}} \leq R_{N}=\sum_{n=N+1}^{+\infty} \frac{n}{1+n^{3}} \leq \int_{N}^{+\infty} \frac{\mathrm{d} t}{t^{2}}
$$

hence

$$
\frac{(N+1)^{2}}{(N+1)^{3}+1} \leq R_{N} \leq \frac{1}{N^{2}}
$$

Now, the result follows from the fact that $R_{N}=S-S_{N}$.
4. From the given numerical values, we obtain (using the previous inequality with $N=38$)

$$
\underline{1.111} 3<S_{38}+\frac{39^{2}}{39^{3}+1} \leq S \leq S_{38}+\frac{1}{38}<\underline{1.11199}
$$

hence we obtain the numerical value of S correct to 3 decimal places:

$$
S=1.111 \ldots
$$

Exercise 3.

1. Let $z \in \mathbb{C}^{*}$. We use the ratio test:

$$
\left|\frac{\frac{(n+1)^{n+1} z^{n+1}}{(n+1)!}}{\frac{n^{n} z^{n}}{n!}}\right|=\frac{(n+1)^{n}}{n^{n}}|z|=\left(1+\frac{1}{n}\right)^{n}|z| \underset{n \rightarrow+\infty}{\longrightarrow} \mathrm{e}|z|
$$

Hence, by the ratio test, the power series converges for $|z|<\mathrm{e}^{-1}$ and diverges for $|z|>\mathrm{e}^{-1}$. We conclude that the radius of convergence of the power series is e^{-1}.
2. a) We know that the radius of convergence of $\sum_{n} n a_{n} x^{n}$ is R. Now, for $z \in \mathbb{C}$ such that $|z|>\sqrt{R}$, the series $\sum_{n} a_{n} z^{2 n}=\sum_{n} a_{n}\left(z^{2}\right)^{n}$ diverges, and for $z \in \mathbb{C}$ such that $|z|<\sqrt{R}$, the series $\sum_{n} a_{n} z^{2 n}=\sum_{n} a_{n}\left(z^{2}\right)^{n}$ converges. We hence conclude that $R_{g}=\sqrt{R}$.
b) We know that for all $x \in(-R, R)$,

$$
f^{\prime}(x)=\sum_{n=1}^{+\infty} n a_{n} x^{n-1}
$$

Hence, for $x \in\left(-R_{g}, R_{g}\right)$,

$$
f^{\prime}\left(x^{2}\right)=\sum_{n=1}^{+\infty} n a_{n} x^{2 n-2}
$$

and we conclude that

$$
g(x)=\sum_{n=0}^{+\infty} n a_{n} x^{2 n+1}=\sum_{n=1}^{+\infty} n a_{n} x^{2 n+1}=x^{3} \sum_{n=1}^{+\infty} n a_{n} x^{2 n-2}=x^{3} f^{\prime}\left(x^{2}\right)
$$

Exercise 4.

1. a) Let $x \in(-R, R)$. We know that f can be differentiated term by term as much as we want within $(-R, R)$, hence

$$
\begin{aligned}
f^{\prime}(x) & =\sum_{n=1}^{+\infty} n a_{n} x^{n-1}=\sum_{n=0}^{+\infty}(n+1) a_{n+1} x^{n} \\
f^{\prime \prime}(x) & =\sum_{n=2}^{+\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{+\infty}(n+2)(n+1) a_{n+2} x^{n}
\end{aligned}
$$

Hence,

$$
x^{3} f^{\prime \prime}(x)=\sum_{n=0}^{+\infty} n(n-1) a_{n} x^{n+1}=\sum_{n=1}^{+\infty}(n-1)(n-2) a_{n-1} x^{n}
$$

$$
\begin{aligned}
x f^{\prime \prime}(x) & =\sum_{n=0}^{+\infty}(n+2)(n+1) a_{n+2} x^{n+1}=\sum_{n=1}^{+\infty}(n+1) n a_{n+1} x^{n} \\
x^{2} f^{\prime}(x) & =\sum_{n=0}^{+\infty} n a_{n} x^{n+1}=\sum_{n=1}^{+\infty}(n-1) a_{n-1} x^{n}
\end{aligned}
$$

hence

$$
\begin{aligned}
x\left(x^{2}+1\right) f^{\prime \prime}(x) & +\left(x^{2}-1\right) f^{\prime}(x) \\
& =-a_{1}+\sum_{n=1}^{+\infty}\left((n-1)(n-2) a_{n-1}+(n+1) n a_{n+1}+(n-1) a_{n-1}-(n+1) a_{n+1}\right) x^{n} \\
& =-a_{1}+\sum_{n=1}^{+\infty}\left((n-1)^{2} a_{n-1}+(n+1)(n-1) a_{n+1}\right) x^{n}
\end{aligned}
$$

b) By the identity theorem, f is a solution of Equation (E) on $(-R, R)$ if and only if

$$
\left\{\begin{array}{l}
a_{1}=-1 \\
\forall n \geq 1,(n-1)^{2} a_{n-1}+(n+1)(n-1) a_{n+1}=0
\end{array}\right.
$$

Note that the case $n=1$ is always fulfilled, and if $n \neq 1$ we can simplify by $n-1$. We hence conclude that f is a solution of Equation (E) if and only if:

$$
\left\{\begin{array}{l}
a_{1}=-1 \\
\forall n \geq 2,(n-1) a_{n-1}+(n+1) a_{n+1}=0
\end{array}\right.
$$

2. a) The coefficients $\left(a_{n}\right)$ hence satisfy

$$
\forall n \geq 2, a_{n+1}=-\frac{n-1}{n+1} a_{n-1}
$$

- We thus have, for the odd ones:

$$
a_{3}=\frac{1}{3}, a_{5}=-\frac{1}{5}, a_{7}=\frac{1}{7}, \ldots
$$

and we conjecture that

$$
\forall k \in \mathbb{N}, a_{2 k+1}=(-1)^{k+1} \frac{1}{2 k+1}
$$

We check this conjecture by induction: for $k=0$ the result holds true; assume it true for some $k \in \mathbb{N}$, then

$$
a_{2 k+3}=-\frac{2 k+1}{2 k+3} a_{2 k+1}=-\frac{2 k+1}{2 k+3}(-1)^{k+1} \frac{1}{2 k+1}=(-1)^{k+2} \frac{1}{2 k+3} .
$$

- Similarly for the even ones:

$$
a_{4}=-\frac{1}{2} a_{2}, a_{6}=\frac{1}{3} a_{2}, a_{8}=-\frac{1}{4} a_{2}, \ldots
$$

and we conjecture that

$$
\forall k \in \mathbb{N}^{*}, a_{2 k}=(-1)^{k+1} \frac{1}{k} a_{2}
$$

We check this conjecture by induction: for $k=1$ the result holds true; assume it true for some $k \in \mathbb{N}^{*}$, then

$$
a_{2 k+2}=-\frac{2 k}{2 k+2} a_{2 k}=-\frac{2 k}{2 k+2}(-1)^{k+1} \frac{1}{k} a_{2}=(-1)^{k+2} \frac{1}{k+1} a_{2} .
$$

b) We split the power series defining f into its odd and even components:

$$
\begin{aligned}
f_{\mathrm{even}}(x) & =\sum_{k=0}^{+\infty} a_{2 k} x^{2 k}=a_{0}+a_{2} \sum_{k=1}^{+\infty} \frac{(-1)^{k+1}}{k} x^{2 k} \\
f_{\text {odd }}(x) & =\sum_{k=0}^{+\infty} a_{2 k+1} x^{2 k+1}=\sum_{k=0}^{+\infty} \frac{(-1)^{k+1}}{2 k+1} x^{2 k+1}
\end{aligned}
$$

It's now easy to see, e.g., using the ratio test, that the radius of convergence of $f_{\text {even }}$ and of $f_{\text {odd }}$ is 1 (unless $a_{2}=0$ in which case the radius of convergence of $f_{\text {even }}$ is 0). Hence $R=1$.
3. a)

$$
\forall x \in(-1,1), h(x)=\frac{1}{1+x}=\sum_{n=0}^{+\infty}(-1)^{n} x^{n}
$$

b) Since a power series can be integrated term by term within its open interval of convergence, we conclude: $\forall x \in(-1,1), F(x)=\ln (1+x)=\int_{0}^{x} \frac{\mathrm{~d} t}{1+t}=\int_{0}^{x}\left(\sum_{n=0}^{+\infty}(-1)^{n} t^{n}\right) \mathrm{d} t=\sum_{n=0}^{+\infty}(-1)^{n} \frac{x^{n+1}}{n+1}=\sum_{n=1}^{+\infty}(-1)^{n-1} \frac{x^{n}}{n}$.
Moreover,

$$
\forall x \in(-1,1), h\left(x^{2}\right)=\frac{1}{1+x^{2}}=\sum_{n=0}^{+\infty}(-1)^{n} x^{2 n}
$$

and hence,

$$
\forall x \in(-1,1), G(x)=\arctan (x)=\int_{0}^{x} \frac{\mathrm{~d} t}{1+t^{2}}=\int_{0}^{x}\left(\sum_{n=0}^{+\infty}(-1)^{n} t^{2 n}\right) \mathrm{d} t=\sum_{n=0}^{+\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}
$$

The radius of convergence of F and G is that of h, i.e., 1 .
4. We hence conclude that:

$$
\forall x \in(-1,1), f_{\text {even }}(x)=a_{0}+a_{2} \ln \left(1+x^{2}\right), \quad \text { and } \quad f_{\text {odd }}(x)=-\arctan (x)
$$

Hence, the solutions of Equation (E) that possess a power series expansion are of the form

$$
f(x)=a_{0}+a_{2} \ln \left(1+x^{2}\right)-\arctan (x)
$$

Exercise 5.

1. Let $z \in \mathbb{C}^{*}$. We use the ratio test:

$$
\left|\frac{\frac{(n+1)^{n+1} z^{n+1}}{(n+1)!}}{\frac{n^{n} z^{n}}{n!}}\right|=\frac{(n+1)^{n}}{n^{n}}|z|=\left(1+\frac{1}{n}\right)^{n}|z| \underset{n \rightarrow+\infty}{\longrightarrow} \mathrm{e}|z|
$$

Hence the radius of the power series is e^{-1}.
2. a) We know that the radius of convergence of $\sum_{n} n a_{n} x^{n}$ is R. Now, for $z \in \mathbb{C}$ such that $|z|>\sqrt{R}$, the series $\sum_{n} a_{n} z^{2 n}=\sum_{n} a_{n}\left(z^{2}\right)^{n}$ diverges, and for $z \in \mathbb{C}$ such that $|z|<\sqrt{R}$, the series $\sum_{n} a_{n} z^{2 n}=\sum_{n} a_{n}\left(z^{2}\right)^{n}$ converges. We hence conclude that $R_{g}=\sqrt{R}$.
b) We know that for all $x \in(-R, R)$,

$$
f^{\prime}(x)=\sum_{n=1}^{+\infty} n a_{n} x^{n-1}
$$

Hence, for $x \in\left(-R_{g}, R_{g}\right)$,

$$
f^{\prime}\left(x^{2}\right)=\sum_{n=1}^{+\infty} n a_{n} x^{2 n-2}
$$

and we conclude that

$$
x^{3} f^{\prime}\left(x^{2}\right)=\sum_{n=1}^{+\infty} n a_{n} x^{2 n+1}=\sum_{n=0}^{+\infty} n a_{n} x^{2 n+1}=g(x)
$$

Exercise 6. We know that

$$
\mathrm{e}^{x} \underset{x \rightarrow 0}{=} 1+x+\frac{x^{2}}{2}+o\left(x^{2}\right)
$$

hence, since $(-1)^{n} / n^{\alpha} \underset{n \rightarrow+\infty}{\longrightarrow} 0$ since $\alpha>0$,

$$
\exp \left(\frac{(-1)^{n}}{n^{\alpha}}\right)-1 \underset{n \rightarrow+\infty}{=} \frac{(-1)^{n}}{n^{\alpha}}+\frac{1}{n^{2 \alpha}}+o\left(\frac{1}{n^{2}}\right)
$$

We can write the general term of the series as

$$
\forall n \in \mathbb{N}^{*}, \exp \left(\frac{(-1)^{n}}{n^{\alpha}}\right)-1=v_{n}+w_{n}
$$

with

$$
\forall n \in \mathbb{N}^{*}, v_{n}=\frac{(-1)^{n}}{n^{\alpha}}, w_{n}=\exp \left(\frac{(-1)^{n}}{n^{\alpha}}\right)-1-v_{n}
$$

Now, we know that the series $\sum_{n} v_{n}$ converges (it's an alternating Riemann series with $\alpha>0$), and since

$$
w_{n} \underset{n \rightarrow+\infty}{=} \frac{1}{n^{2 \alpha}}+o\left(\frac{1}{n^{2 \alpha}}\right) \underset{n \rightarrow+\infty}{\sim} \frac{1}{n^{2 \alpha}}>0
$$

we conclude, by the equivalent test, that the series $\sum_{n} w_{n}$ converges if and only if $2 \alpha>1$, i.e., if and only if $\alpha>1 / 2$.
We know that the sum of a convergent series and a divergent series yields a divergent series, and that the sum of two convergent series yields a convergent one.
Hence, the series converges if and only if $\alpha>1 / 2$.

Exercise 7.

1.

$$
\frac{n}{1+n^{3}} \underset{n \rightarrow+\infty}{\sim} \frac{1}{n^{2}}>0
$$

and by Riemann, the series $\sum_{n} 1 / n^{2}$ converges. Hence, by the equivalent test, the series $\sum_{n} n /\left(1+n^{3}\right)$ converges.
2. Let $t \in(0,+\infty)$. Since $1+t^{3}>t^{3}$,

$$
\frac{1}{1+t^{3}}>\frac{1}{t^{3}}
$$

and multiplying by $t>0$ yields the first inequality.
Let $N \in \mathbb{N}^{*}$ and let $t \in[N+1,+\infty)$. Then

$$
\frac{t}{1+t^{3}}-\frac{1}{\left(1+\frac{1}{(N+1)^{3}}\right) t^{2}}=\frac{\left(1+\frac{1}{(N+1)^{3}}\right) t^{3}-1-t^{3}}{t^{2}\left(1+\frac{1}{(N+1)^{2}}\right) t^{2}}=\frac{\frac{t^{3}}{(N+1)^{3}}-1}{t^{2}\left(1+\frac{1}{(N+1)^{2}}\right) t^{2}} \geq 0 .
$$

3. Let $N \geq 2$. Define the function

$$
\begin{aligned}
f:[N-1,+\infty) & \longrightarrow \frac{\mathbb{R}}{t} \\
t & \longmapsto \frac{t}{1+t^{3}} .
\end{aligned}
$$

For $t \in[N-1,+\infty)$,

$$
f^{\prime}(t)=\frac{1-2 t^{3}}{\left(1+t^{3}\right)^{2}}<0
$$

since $t \geq N-1 \geq 1$, hence the function f is decreasing: we can use the integral comparison test, and we obtain:

$$
\frac{1}{1+\frac{1}{(N+1)^{3}}} \int_{N+1}^{+\infty} \frac{\mathrm{d} t}{t^{2}} \leq R_{N}=\sum_{n=N+1}^{+\infty} \frac{n}{1+n^{3}} \leq \int_{N}^{+\infty} \frac{\mathrm{d} t}{t^{2}}
$$

hence

$$
\frac{(N+1)^{2}}{(N+1)^{3}+1} \leq R_{N} \leq \frac{1}{N^{2}}
$$

Now, the result follows from the fact that $R_{N}=S-S_{N}$.
4. From the given numerical values, we obtain (using the previous inequality with $N=38$)

$$
\underline{1.111} 3<S_{38}+\frac{39^{2}}{39^{3}+1} \leq S \leq S_{38}+\frac{1}{38}<\underline{1.111} 99
$$

hence we obtain the numerical value of S correct to 3 decimal places:

$$
S=1.111 \ldots
$$

Exercise 8.

1.

$$
\forall(x, y, z) \in \mathbb{R}^{3}, q(x, y, z)=x^{2}+4 x y+6 x z+2 y^{2}+8 y z-z^{2}
$$

2.

$$
M=\left(\begin{array}{ccc}
1 & 1 & 3 / 2 \\
1 & -1 & 0 \\
3 / 2 & 0 & -3
\end{array}\right)
$$

