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Exercise 1. We know that

ex =
x→0

1 + x+
x2

2
+ o
(

x2
)

hence, since (−1)n/nα −→
n→+∞

0,

exp

(

(−1)n

nα

)

− 1 =
n→+∞

(−1)n

nα
+

1

n2α
+ o

(

1

n2

)

.

We can write the general term of the series as

∀n ∈ N
∗, exp

(

(−1)n

nα

)

− 1 = vn + wn

with

∀n ∈ N
∗, vn =

(−1)n

nα
, wn = exp

(

(−1)n

nα

)

− 1− vn.

Now, we know that the series
∑

n vn converges (it’s an alternating Riemann series), and since

wn =
n→+∞

1

n2α
+ o

(

1

n2α

)

∼
n→+∞

1

n2α
> 0

we conclude that the series
∑

n wn converges if and only if 2α > 1, i.e., if and only if α > 1/2.
We know that the sum of a convergent series and a divergent series yields a divergent series, and that the sum
of two convergent series yields a convergent one.
Hence, the series converges if and only if α > 1/2.

Exercise 2.

1.
n

1 + n3
∼

n→+∞

1

n2
> 0

and by Riemann (with α = 2 > 1), the series
∑

n 1/n
2 converges. Hence, by the equivalent test, the series

∑

n n/
(

1 + n3
)

converges.

2. Let t ∈ (0,+∞). Since 1 + t3 > t3 > 0,
1

1 + t3
<

1

t3

and multiplying by t > 0 yields the first inequality.

Let N ∈ N
∗ and let t ∈ [N + 1,+∞). Then

t

1 + t3
− 1
(

1 +
1

(N + 1)3

)

t2
=

(

1 +
1

(N + 1)3

)

t3 − 1− t3

t2
(

1 +
1

(N + 1)2

)

t2
=

t3

(N + 1)3
− 1

t2
(

1 +
1

(N + 1)2

)

t2
≥ 0.

3. Let N ≥ 2. Define the function
f : [N,+∞) −→ R

t 7−→ t

1 + t3
.

For t ∈ [N,+∞),

f ′(t) =
1− 2t3
(

1 + t3
)2

< 0



since t ≥ N ≥ 1, hence the function f is decreasing: we can use the integral comparison test, and we obtain:

1

1 +
1

(N + 1)3

∫ +∞

N+1

dt

t2
≤ RN =

+∞
∑

n=N+1

n

1 + n3
≤
∫ +∞

N

dt

t2
,

hence
(N + 1)2

(N + 1)3 + 1
≤ RN ≤ 1

N2
.

Now, the result follows from the fact that RN = S − SN .

4. From the given numerical values, we obtain (using the previous inequality with N = 38)

1.1113 < S38 +
392

393 + 1
≤ S ≤ S38 +

1

38
< 1.11199,

hence we obtain the numerical value of S correct to 3 decimal places:

S = 1.111 . . .

Exercise 3.

1. Let z ∈ C
∗. We use the ratio test:

∣

∣

∣

∣

∣

∣

∣

∣

(n+ 1)n+1zn+1

(n+ 1)!
nnzn

n!

∣

∣

∣

∣

∣

∣

∣

∣

=
(n+ 1)n

nn
|z| =

(

1 +
1

n

)n

|z| −→
n→+∞

e|z|.

Hence, by the ratio test, the power series converges for |z| < e−1 and diverges for |z| > e−1. We conclude
that the radius of convergence of the power series is e−1.

2. a) We know that the radius of convergence of
∑

n nanx
n is R. Now, for z ∈ C such that |z| >

√
R, the series

∑

n anz
2n =

∑

n an
(

z2
)n

diverges, and for z ∈ C such that |z| <
√
R, the series

∑

n anz
2n =

∑

n an
(

z2
)n

converges. We hence conclude that Rg =
√
R.

b) We know that for all x ∈ (−R,R),

f ′(x) =

+∞
∑

n=1

nanx
n−1.

Hence, for x ∈ (−Rg, Rg),

f ′
(

x2
)

=

+∞
∑

n=1

nanx
2n−2,

and we conclude that

g(x) =

+∞
∑

n=0

nanx
2n+1 =

+∞
∑

n=1

nanx
2n+1 = x3

+∞
∑

n=1

nanx
2n−2 = x3f ′

(

x2
)

.

Exercise 4.

1. a) Let x ∈ (−R,R). We know that f can be differentiated term by term as much as we want within (−R,R),
hence

f ′(x) =

+∞
∑

n=1

nanx
n−1 =

+∞
∑

n=0

(n+ 1)an+1x
n,

f ′′(x) =
+∞
∑

n=2

n(n− 1)anx
n−2 =

+∞
∑

n=0

(n+ 2)(n+ 1)an+2x
n.

Hence,

x3f ′′(x) =

+∞
∑

n=0

n(n− 1)anx
n+1 =

+∞
∑

n=1

(n− 1)(n− 2)an−1x
n,



xf ′′(x) =

+∞
∑

n=0

(n+ 2)(n+ 1)an+2x
n+1 =

+∞
∑

n=1

(n+ 1)nan+1x
n,

x2f ′(x) =

+∞
∑

n=0

nanx
n+1 =

+∞
∑

n=1

(n− 1)an−1x
n,

hence

x
(

x2 + 1
)

f ′′(x) +
(

x2 − 1
)

f ′(x)

= −a1 +

+∞
∑

n=1

(

(n− 1)(n− 2)an−1 + (n+ 1)nan+1 + (n− 1)an−1 − (n+ 1)an+1

)

xn

= −a1 +
+∞
∑

n=1

(

(n− 1)2an−1 + (n+ 1)(n− 1)an+1

)

xn

b) By the identity theorem, f is a solution of Equation (E) on (−R,R) if and only if
{

a1 = −1

∀n ≥ 1, (n− 1)2an−1 + (n+ 1)(n− 1)an+1 = 0.

Note that the case n = 1 is always fulfilled, and if n 6= 1 we can simplify by n − 1. We hence conclude
that f is a solution of Equation (E) if and only if:

{

a1 = −1

∀n ≥ 2, (n− 1)an−1 + (n+ 1)an+1 = 0.

2. a) The coefficients (an) hence satisfy

∀n ≥ 2, an+1 = −n− 1

n+ 1
an−1.

• We thus have, for the odd ones:

a3 =
1

3
, a5 = −1

5
, a7 =

1

7
, . . .

and we conjecture that

∀k ∈ N, a2k+1 = (−1)k+1 1

2k + 1
.

We check this conjecture by induction: for k = 0 the result holds true; assume it true for some k ∈ N,
then

a2k+3 = −2k + 1

2k + 3
a2k+1 = −2k + 1

2k + 3
(−1)k+1 1

2k + 1
= (−1)k+2 1

2k + 3
.

• Similarly for the even ones:

a4 = −1

2
a2, a6 =

1

3
a2, a8 = −1

4
a2, . . .

and we conjecture that

∀k ∈ N
∗, a2k = (−1)k+1 1

k
a2.

We check this conjecture by induction: for k = 1 the result holds true; assume it true for some k ∈ N
∗,

then

a2k+2 = − 2k

2k + 2
a2k = − 2k

2k + 2
(−1)k+1 1

k
a2 = (−1)k+2 1

k + 1
a2.

b) We split the power series defining f into its odd and even components:

feven(x) =

+∞
∑

k=0

a2kx
2k = a0 + a2

+∞
∑

k=1

(−1)k+1

k
x2k,

fodd(x) =

+∞
∑

k=0

a2k+1x
2k+1 =

+∞
∑

k=0

(−1)k+1

2k + 1
x2k+1.

It’s now easy to see, e.g., using the ratio test, that the radius of convergence of feven and of fodd is 1
(unless a2 = 0 in which case the radius of convergence of feven is 0). Hence R = 1.



3. a)

∀x ∈ (−1, 1), h(x) =
1

1 + x
=

+∞
∑

n=0

(−1)nxn.

b) Since a power series can be integrated term by term within its open interval of convergence, we conclude:

∀x ∈ (−1, 1), F (x) = ln(1 + x) =

∫ x

0

dt

1 + t
=

∫ x

0

(

+∞
∑

n=0

(−1)ntn

)

dt =

+∞
∑

n=0

(−1)n
xn+1

n+ 1
=

+∞
∑

n=1

(−1)n−1x
n

n
.

Moreover,

∀x ∈ (−1, 1), h
(

x2
)

=
1

1 + x2
=

+∞
∑

n=0

(−1)nx2n,

and hence,

∀x ∈ (−1, 1), G(x) = arctan(x) =

∫ x

0

dt

1 + t2
=

∫ x

0

(

+∞
∑

n=0

(−1)nt2n

)

dt =

+∞
∑

n=0

(−1)n
x2n+1

2n+ 1
.

The radius of convergence of F and G is that of h, i.e., 1.

4. We hence conclude that:

∀x ∈ (−1, 1), feven(x) = a0 + a2 ln
(

1 + x2
)

, and fodd(x) = − arctan(x).

Hence, the solutions of Equation (E) that possess a power series expansion are of the form

f(x) = a0 + a2 ln
(

1 + x2
)

− arctan(x).

Exercise 5.

1. Let z ∈ C
∗. We use the ratio test:
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∣
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|z| =

(

1 +
1

n

)n

|z| −→
n→+∞

e|z|.

Hence the radius of the power series is e−1.

2. a) We know that the radius of convergence of
∑

n nanx
n is R. Now, for z ∈ C such that |z| >

√
R, the series

∑

n anz
2n =

∑

n an
(

z2
)n

diverges, and for z ∈ C such that |z| <
√
R, the series

∑

n anz
2n =

∑

n an
(

z2
)n

converges. We hence conclude that Rg =
√
R.

b) We know that for all x ∈ (−R,R),

f ′(x) =

+∞
∑

n=1

nanx
n−1.

Hence, for x ∈ (−Rg, Rg),

f ′
(

x2
)

=

+∞
∑

n=1

nanx
2n−2,

and we conclude that

x3f ′
(

x2
)

=

+∞
∑

n=1

nanx
2n+1 =

+∞
∑

n=0

nanx
2n+1 = g(x).

Exercise 6. We know that

ex =
x→0

1 + x+
x2

2
+ o
(

x2
)

hence, since (−1)n/nα −→
n→+∞

0 since α > 0,

exp

(

(−1)n

nα

)

− 1 =
n→+∞

(−1)n

nα
+

1

n2α
+ o

(

1

n2

)

.



We can write the general term of the series as

∀n ∈ N
∗, exp

(

(−1)n

nα

)

− 1 = vn + wn

with

∀n ∈ N
∗, vn =

(−1)n

nα
, wn = exp

(

(−1)n

nα

)

− 1− vn.

Now, we know that the series
∑

n vn converges (it’s an alternating Riemann series with α > 0), and since

wn =
n→+∞

1

n2α
+ o

(

1

n2α

)

∼
n→+∞

1

n2α
> 0

we conclude, by the equivalent test, that the series
∑

n wn converges if and only if 2α > 1, i.e., if and only
if α > 1/2.
We know that the sum of a convergent series and a divergent series yields a divergent series, and that the sum
of two convergent series yields a convergent one.
Hence, the series converges if and only if α > 1/2.

Exercise 7.

1.
n

1 + n3
∼

n→+∞

1

n2
> 0

and by Riemann, the series
∑

n 1/n
2 converges. Hence, by the equivalent test, the series

∑

n n/
(

1 + n3
)

converges.

2. Let t ∈ (0,+∞). Since 1 + t3 > t3,
1

1 + t3
>

1

t3

and multiplying by t > 0 yields the first inequality.

Let N ∈ N
∗ and let t ∈ [N + 1,+∞). Then

t

1 + t3
− 1
(

1 +
1

(N + 1)3

)

t2
=

(

1 +
1

(N + 1)3

)

t3 − 1− t3

t2
(

1 +
1

(N + 1)2

)

t2
=

t3

(N + 1)3
− 1

t2
(

1 +
1

(N + 1)2

)

t2
≥ 0.

3. Let N ≥ 2. Define the function
f : [N − 1,+∞) −→ R

t 7−→ t

1 + t3
.

For t ∈ [N − 1,+∞),

f ′(t) =
1− 2t3
(

1 + t3
)2

< 0

since t ≥ N − 1 ≥ 1, hence the function f is decreasing: we can use the integral comparison test, and we
obtain:

1

1 +
1

(N + 1)3

∫ +∞

N+1

dt

t2
≤ RN =

+∞
∑

n=N+1

n

1 + n3
≤
∫ +∞

N

dt

t2
,

hence
(N + 1)2

(N + 1)3 + 1
≤ RN ≤ 1

N2
.

Now, the result follows from the fact that RN = S − SN .



4. From the given numerical values, we obtain (using the previous inequality with N = 38)

1.1113 < S38 +
392

393 + 1
≤ S ≤ S38 +

1

38
< 1.11199,

hence we obtain the numerical value of S correct to 3 decimal places:

S = 1.111 . . .

Exercise 8.

1.
∀(x, y, z) ∈ R

3, q(x, y, z) = x2 + 4xy + 6xz + 2y2 + 8yz − z2.

2.

M =





1 1 3/2
1 −1 0
3/2 0 −3



 .


