No documents, no calculators, no cell phones or electronic devices allowed but you may keep your pet blobfish for moral support.
All your answers must be fully justified, unless noted otherwise.

Exercise 1 (3 points). Let $\alpha \in \mathbb{R}_{+}^{*}$. Determine whether the following numerical series converges or diverges

$$
\sum_{n}\left(\exp \left(\frac{(-1)^{n}}{n^{\alpha}}\right)-1\right)
$$

Exercise 2 (5 points). The goal of this exercise is to determine a numerical approximation of the sum of the series

$$
S=\sum_{n=0}^{+\infty} \frac{n}{1+n^{3}} .
$$

1. Briefly justify that the series $\sum_{n} n /\left(1+n^{3}\right)$ converges.

For $N \in \mathbb{N}$ we define

$$
S_{N}=\sum_{n=0}^{N} \frac{n}{1+n^{3}} \quad \text { and } \quad R_{N}=\sum_{n=N+1}^{+\infty} \frac{n}{1+n^{3}} .
$$

2. Check that

$$
\begin{gathered}
\forall t \in(0,+\infty), \frac{t}{1+t^{3}} \leq \frac{1}{t^{2}} \\
\forall N \in \mathbb{N}^{*}, \forall t \in[N+1,+\infty), \frac{1}{\left(1+\frac{1}{(N+1)^{3}}\right) t^{2}} \leq \frac{t}{1+t^{3}}
\end{gathered}
$$

3. Use the integral comparison test (after justifying that it's valid to use it) to show that:

$$
\forall N \geq 2, \frac{(N+1)^{2}}{(N+1)^{3}+1} \leq S-S_{N} \leq \frac{1}{N}
$$

4. You're given:
$S_{38}+\frac{39^{2}}{39^{3}+1}=1.1113120793017316723297123487164 \ldots \quad$ and $\quad S_{38}+\frac{1}{38}=1.1119872753836424506240658994848 \ldots$
Deduce an approximation of S correct to as many decimal places as you can.
Exercise 3 (3 points). The two questions of this exercise are independent from each other.
5. You are given that

$$
\lim _{n \rightarrow+\infty}\left(1+\frac{1}{n}\right)^{n}=\mathrm{e}
$$

Determine the radius of convergence of the power series

$$
f(z)=\sum_{n=0}^{+\infty} \frac{n^{n}}{n!} z^{n} .
$$

2. Let $\sum_{n} a_{n} x^{n}$ be a power series of radius of convergence $R>0$, and let

$$
\begin{aligned}
f:(-R, R) & \longrightarrow \mathbb{R} \\
x & \longmapsto \sum_{n=0}^{+\infty} a_{n} x^{n}
\end{aligned}
$$

be the associated function.
a) What is the radius of convergence R_{g} of the power series

$$
\sum_{n} n a_{n} x^{2 n+1} ?
$$

b) Determine an explicit expression of the function

$$
\begin{aligned}
g:\left(-R_{g}, R_{g}\right) & \longrightarrow \mathbb{R} \\
x & \longmapsto \sum_{n=0}^{+\infty} n a_{n} x^{2 n+1}
\end{aligned}
$$

in terms of f.
Exercise 4 (8 points). The goal of this exercise is to find the solutions of the following differential equation

$$
\begin{equation*}
x\left(x^{2}+1\right) y^{\prime \prime}(x)+\left(x^{2}-1\right) y^{\prime}(x)=1 \tag{E}
\end{equation*}
$$

that possess a power series expansion around 0 .
Let f be a function defined by a power series of radius $R>0$, say

$$
\forall x \in(-R, R), f(x)=\sum_{n=0}^{+\infty} a_{n} x^{n}
$$

1. a) For $x \in(-R, R)$, express $x\left(x^{2}+1\right) f^{\prime \prime}(x)+\left(x^{2}-1\right) f^{\prime}(x)$ as the sum of a power series.
b) Show that f is a solution of Equation (E) on $(-R, R)$ if and only if

$$
\left\{\begin{array}{l}
a_{1}=-1 \tag{*}\\
\forall n \geq 2,(n-1) a_{n-1}+(n+1) a_{n+1}=0
\end{array}\right.
$$

2. From now on we assume that the coefficients $\left(a_{n}\right)_{n \in \mathbb{N}}$ satisfy the condition $(*)$.
a) Deduce, in terms of a_{2}, an explicit expression of the coefficients a_{n} for $n \geq 1$. You will consider the odd terms and the even terms separately.
b) Determine the radius of convergence R of the power series f. You will consider the odd and even components of f separately.
3. a) Recall (without any justifications) the power series expansion of the function

$$
\begin{aligned}
h:(-1,1) & \longrightarrow \mathbb{R} \\
x & \longmapsto \frac{1}{1+x} .
\end{aligned}
$$

b) Deduce the power series expansion of the expressions $F(x)=\ln (1+x)$ and $G(x)=\arctan (x)$, and specify their radii of convergence.
c) Deduce an explicit expression of the solutions of Equation (E).

Exercise 5 (1 points). The two questions of this exercise are independent from each other.

1. Let q be the quadratic form on \mathbb{R}^{3} the matrix of which, in the standard basis of \mathbb{R}^{3} is

$$
[q]_{\mathrm{std}}=M=\left(\begin{array}{ccc}
1 & 2 & 3 \\
2 & 2 & 4 \\
3 & 4 & -1
\end{array}\right)
$$

For $(x, y, z) \in \mathbb{R}^{3}$, give an explicit expression of $q(x, y, z)$. No justifications required.
2. Let q be the quadratic form on \mathbb{R}^{3} defined by

$$
q: \begin{aligned}
\mathbb{R}^{3} & \longrightarrow \\
(x, y, z) & \longmapsto x^{2}-y^{2}-3 z^{2}+2 x y+3 x z .
\end{aligned}
$$

Give the matrix $M=[q]_{\text {std }}$ of q in the standard basis of \mathbb{R}^{3}. No justifications required.

