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1. The function f is continuous on the closed and bounded set C hence, by the Extreme Value Theorem, f is
bounded and attains its bounds.

2. We determine the critical points of f in C: Let (z,y) € C. Then:

1
81f(1'7y):41'3—4, 82f(1'7y):4y3_§,

hence
422 —4 =0

wro12-=0 (z,y) = (1,1/2).

(z,y) is a critical point of f <— {

We now study the Hessian matrix of f at this critical point: for (z,y) € C,

ailf('ray) = 12$2, af,Zf(xvy) = Oﬂ a§,2f(‘ra y) = 12y2a

hence the Hessian matrix of f at (1,1/2) is

12 0
H(1,1/2)f = (O 3>~

Its signature is (2,0), hence f possesses a local minimum at (1,1/2), and f(1,1/2) = —51/16.
We now study f on 90C":

e On the lower horizontal side [0, 2] x {0}:
Vr €[0,2], ¢(x) = f(x,0) = 2* — 4a.

We study the extreme values of ¢:

¢ (x) = 423 — 4,
hence ¢ possesses a unique critical point at 1, and ¢(1) = —3. Moreover, ¢(0) = 0 and ¢(2) = 8, hence
the minimum value of f on this side is —3 and its maximum is 8.

e On the upper horizontal side [0,2] x {2}:
Yz €[0,2], o(x) = f(z,2) =2* + 16 — 4o — 1 = 2* — 4z + 15.

This is just a shifted version of the previous case, hence the minimum value of f on this side is 12 and
its maximum is 23.

e On the left vertical side {0} x [0, 2]:

)
¥y €[0,2], ¢(z) = f(0,9) =" - 5.
We study the extreme values of :
1
¢y =4’ - 3,

hence ¢ possesses a unique critical points at 1/2 and ¢(1/2) = —3/16. Moreover, ¢(0) = 0 and ¢(2) = 15,
hence the minimum value of f on this side is —3/16 and its maximum value is 15.

e On the right vertical side {2} x [0, 2]:

vy € (0,2, @(x)=f(2,y)=16+y4—8—%=y4—%+8-

This is just a shifted version of the previous case, hence the minimum value of f on this side is
—3/16 + 8 = 125/16 and its maximum value is 23.



Conclusion: the minimum value of f on C' is —51/16 and is attained at (1,1/2) and the maximum value of f
on C' is 23 and is attained at (2,2).

Exercise 2.
1. 1 is an obvious eigenvalue of A since

1 -1 -1
tk(A—I3)=tk[-1 1 1 | =1
-1 1 1

and we conclude that its multiplicity is 3—rk(A—I3) = 2 (since A is diagonalizable since A is a real symmetric
matrix). We use the trace to determine the other eigenvalue:

tr(A) = 6 = 1+ 1 + other eigenvalue

hence 4 is the other eigenvalue of A.

We know that the eigenspaces of A are orthogonal; now the equation of the eigenspace E; associated with
the eigenvalue 1 is

(E1) r—y—z=0

1
from which we read that X, = | —1 | € Ef-, hence X4 is an eigenvalue associated with the eigenvalue 4.
-1

1
We now pick a random (non-nil) vector in Eq, say X; = | 1 |. We use the cross-product to produce another
0

vector in Ei- = F, orthogonal to Xi:

1 1 1
Yl = X4 X X1 =1 -1 X 11 =1-1
-1 0 2

At this point, we know that (X7,Y7, X4) is an orthogonal family. We define the matrix

1/vV2 1/V/6  1/V3
P=11/vV2 -1/v6 -1/V3],
0 2/V/6  —1/V3
obtained by stacking the vectors X7, Y7, X4 divided by their respective norm, so that P is an orthogonal
matrix, and by setting

D =

S O =
o = O
= O O

we have A= PD tP.

Exercise 3.
1. We are given that ¢ is a symmetric bilinear form on F. Moreover,

e ¢ is positive semi-definite: let f € E. Then

o) = / F)at,

and since ¢ — f(¢)?t is non-negative on [0, 1], we conclude that ¢(f, f) > 0.

e ¢ is positive definite: let f € E such that o(f, f) = 0. Then, since t — f(t)?t is continuous and

non-negative, we conclude that
vt €[0,1], f(t)*t =0,

hence
vt € (0,1], f(t) =0,

and since f is continuous at 0, we conclude that f(0) = 0. Hence V¢ € [0,1], f(¢) =0, i.e., f = 0g.



2. Let k,¢ € N. Then
1

1
= [ thHtHlqp=—— .
Pk, ue) /O k+0+2

3. o We set vg = up.
o We set v1 = u1 + Aug for some A € R. Then

p(ur,uo)  1/3

v1 Lo vg <= @(v1,v0) =0 <= p(u1,ug) + Ap(ug,up) =0 <= A= -—"——"—= =

¢(ug, uo) /2

We hence set 5

V1 = Ul — zUug.

3
The family %] = (vg, v1) is an orthogonal basis of Fj.

4. Let k € N. Since 4] is an orthogonal basis of F;, we have

Uz, v Uz, v
o(u3,vo) +<P(3 1)

uz) = v V1.
pl( 3) QU('UO"UO) 0 @(Ul,’l}l) 1
Now,
2 1 21 1
(p(u37vl) = @(u&ul) - g@(Ug,UO) = 6 — gg — %
(v1,v1) = p(u u)—é(u U)+é(uu)—1_éxl+é l_i
pv1,v1) = pluL, Uy 3@0»1 9500,0—43392_36
Hence
1/5 1/30
pl(Ug) - 1/72’00 + %Ul
2,6
= 5U0 501
2, 6,2
_5’U,0 5 Ul 3U0
2 +
= —Zuo+ Zu1.
Flot g
5.
1 ) )
. 3 _ _ - -
(a%1£R2/0 (t* —at —b) tdt_(a%1£R2||u3 auy — uo,

= min|jus — v|?
veF; ®
= ||lug — p1 (u3)||i by the property of the orthogonal projection

= ||U3||i — |lp1 (U3)Hi by the Pythagorean Theorem

2

1 21} " 61}
=35~ ||g t U1
8 5 b) o
o2 17 |6 |
=—-—|lzv|| — = by the Pythagorean Theorem
8 571, 571,
_l_o4 1 36 1
8 2572 257 36
_ b
200

Exercise 4.
Part I

1. Let ug,h € E. Recall that
q(uo + h) = q(uo) + 2¢(uo, h) + q(h)

2
-



and that, since 8 is linear, 8(ug + h) = B(ug) + S(h). Hence
f(uo +h) = q(uo + h) + B(h) = q(uo) + 2¢(uo, h) + q(h) + B(uo) + B(h),
as required.

2. Since ¢ is a bilinear form, ¢ is linear with respect to its second argument. We hence recognize ,,, as a linear
combination of two linear maps; hence p,, is linear. Now let h € E and denote by H = [h]stq its coordinates
in the standard basis std of E. Then

Lo () = 2¢(uo, k) + B(h) = 2'UyAH + BH = (2'UyA+ B)H,
hence the matrix of y,,, in the standard basis std of E is

My = [Hug)sta = 2'Ug A + B.

3. a) Let up € E. Then

Py =0 <= M,, =0
— 2'UyA+ B =0 by Question 2
— 'PpA = —%B
— TAU, = —% ‘B since t(tUOA) ="'AU,
— AU, = —% ‘B since A is symmetric
<— Uy = 7%14—1 ‘B since A 1is invertible

Hence there exists a unique ug € E such that u,, = 0, namely the element ug € E such that
L
Uo = [uo]std = —§A B.

b) Let h € E. Then, by Question 1,
fluo + h) = q(h) + 2¢(uo, h) + B(h) + q(uo) + B(uo) = q(h) + puy (h) + q(uo) + B(uo).
Now, ug is such that i, (h) = 0, so that
fuo +h) = q(h) + q(uo) + B(uo).
Also, 0 = prug (u0) = 2q(uo) + B(uo), hence B(ug) = —2q(uo), hence
fuo + h) = q(h) + q(uo) — 2q(uo) = q(h) — q(uo).

Part II
1. We set

qg: R> — R and B: R — R
(z,y) — 1322 + 102y + 13y> (z,y) —> 26322 + 10v/2y.

Clearly ¢ is a quadratic form (since ¢ is a homogeneous polynomial of degree 2) and § is linear. It is also
clear that

Vu € R?, f(u) = q(u) + B(u).
13 5
5 13
hence we can apply the result of Question 3 in Part I.

<x0> _ 71A71 tB
Yo 2

2. We first observe that A = [¢]sta = satisfies det A = 169 — 25 = 144 # 0, hence A is invertible,

We know that ug = (xq,yo) satisfies



where

13 5
A:(5 13> and  B=(26v2 10v2).
_ L (13 -5
1—7
A= <—5 13)

(1) (3 D) - D -0

Hence ug = (—v/2,0).

Now,

hence

")

3. 8 and 18 are eigenvalues of A since

A—8I; = <§ g) and A — 1813 = (‘55 _55>

and these matrices are not invertible. It is now clear that

- (4)- 5o ()

are eigenvectors of A associated with the eigenvalues 8 and 18 respectively. We set vy = (1/v/2, —1/4/2) and
vy = (1/4/2,1/V/2). Tt is clear that &’ = (v1,vy) is an orthonormal (with respect to the standard dot product

of R?) basis of R? and that
o _ (8 0
4]z = A" = (0 18) ~

/!
4. Let [ugla = <z9> be the coordinates of uy in the basis %’. Then, for u = (x,y) € R? with coordinates
0

[u]g = Za;/ we obtain, from Question 3b of Part I:

fu) = q(u—uo) — q(uo) = 8(a" — 2)* +18(y" — yp)* — q(uo).
Now, q(ug) = 13 x (—v/2)? + 10 x (—v/2) x 0+ 13 x 0% = 26, hence
f(u) = 8(a" — x5)* +18(y" — yp)* — 26.

Hence

(' —20)* (W' —50)* _

u € (C) <= 8(a'—x)?+18(y' —yp)?—26 = 46 <= 8(2'—x()* +18(y/ —yp)* = 72 +—= 5 1

as required.

5. See Figure 8.
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Figure 8. Ellipse (C) of Exercise 4



