Exercise 1.

1. The function f is continuous on the closed and bounded set C hence, by the Extreme Value Theorem, f is bounded and attains its bounds.
2. We determine the critical points of f in $\stackrel{\circ}{C}$: Let $(x, y) \in \dot{C}$. Then:

$$
\partial_{1} f(x, y)=4 x^{3}-4,
$$

$$
\partial_{2} f(x, y)=4 y^{3}-\frac{1}{2}
$$

hence

$$
(x, y) \text { is a critical point of } f \Longleftrightarrow\left\{\begin{array}{l}
4 x^{3}-4=0 \\
4 y^{3}-1 / 2=0
\end{array} \Longleftrightarrow(x, y)=(1,1 / 2)\right.
$$

We now study the Hessian matrix of f at this critical point: for $(x, y) \in C$,

$$
\partial_{1,1}^{2} f(x, y)=12 x^{2}, \quad \partial_{1,2}^{2} f(x, y)=0, \quad \partial_{2,2}^{2} f(x, y)=12 y^{2},
$$

hence the Hessian matrix of f at $(1,1 / 2)$ is

$$
H_{(1,1 / 2)} f=\left(\begin{array}{cc}
12 & 0 \\
0 & 3
\end{array}\right)
$$

Its signature is $(2,0)$, hence f possesses a local minimum at $(1,1 / 2)$, and $f(1,1 / 2)=-51 / 16$.
We now study f on ∂C :

- On the lower horizontal side $[0,2] \times\{0\}$:

$$
\forall x \in[0,2], \varphi(x)=f(x, 0)=x^{4}-4 x
$$

We study the extreme values of φ :

$$
\varphi^{\prime}(x)=4 x^{3}-4
$$

hence φ possesses a unique critical point at 1 , and $\varphi(1)=-3$. Moreover, $\varphi(0)=0$ and $\varphi(2)=8$, hence the minimum value of f on this side is -3 and its maximum is 8 .

- On the upper horizontal side $[0,2] \times\{2\}$:

$$
\forall x \in[0,2], \varphi(x)=f(x, 2)=x^{4}+16-4 x-1=x^{4}-4 x+15 .
$$

This is just a shifted version of the previous case, hence the minimum value of f on this side is 12 and its maximum is 23 .

- On the left vertical side $\{0\} \times[0,2]$:

$$
\forall y \in[0,2], \varphi(x)=f(0, y)=y^{4}-\frac{y}{2}
$$

We study the extreme values of φ :

$$
\varphi^{\prime}(y)=4 y^{3}-\frac{1}{2}
$$

hence φ possesses a unique critical points at $1 / 2$ and $\varphi(1 / 2)=-3 / 16$. Moreover, $\varphi(0)=0$ and $\varphi(2)=15$, hence the minimum value of f on this side is $-3 / 16$ and its maximum value is 15 .

- On the right vertical side $\{2\} \times[0,2]$:

$$
\forall y \in[0,2], \varphi(x)=f(2, y)=16+y^{4}-8-\frac{y}{2}=y^{4}-\frac{y}{2}+8 .
$$

This is just a shifted version of the previous case, hence the minimum value of f on this side is $-3 / 16+8=125 / 16$ and its maximum value is 23 .

Conclusion: the minimum value of f on C is $-51 / 16$ and is attained at $(1,1 / 2)$ and the maximum value of f on C is 23 and is attained at $(2,2)$.

Exercise 2.

1. 1 is an obvious eigenvalue of A since

$$
\operatorname{rk}\left(A-I_{3}\right)=\operatorname{rk}\left(\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 1 & 1 \\
-1 & 1 & 1
\end{array}\right)=1
$$

and we conclude that its multiplicity is $3-\operatorname{rk}\left(A-I_{3}\right)=2$ (since A is diagonalizable since A is a real symmetric matrix). We use the trace to determine the other eigenvalue:

$$
\operatorname{tr}(A)=6=1+1+\text { other eigenvalue }
$$

hence 4 is the other eigenvalue of A.
We know that the eigenspaces of A are orthogonal; now the equation of the eigenspace E_{1} associated with the eigenvalue 1 is

$$
\begin{equation*}
x-y-z=0 \tag{1}
\end{equation*}
$$

from which we read that $X_{4}=\left(\begin{array}{c}1 \\ -1 \\ -1\end{array}\right) \in E_{1}^{\perp}$, hence X_{4} is an eigenvalue associated with the eigenvalue 4.
We now pick a random (non-nil) vector in E_{1}, say $X_{1}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$. We use the cross-product to produce another vector in $E_{4}^{\perp}=E_{1}$, orthogonal to X_{1} :

$$
Y_{1}=X_{4} \times X_{1}=\left(\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right) \times\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right)
$$

At this point, we know that $\left(X_{1}, Y_{1}, X_{4}\right)$ is an orthogonal family. We define the matrix

$$
P=\left(\begin{array}{ccc}
1 / \sqrt{2} & 1 / \sqrt{6} & 1 / \sqrt{3} \\
1 / \sqrt{2} & -1 / \sqrt{6} & -1 / \sqrt{3} \\
0 & 2 / \sqrt{6} & -1 / \sqrt{3}
\end{array}\right)
$$

obtained by stacking the vectors X_{1}, Y_{1}, X_{4} divided by their respective norm, so that P is an orthogonal matrix, and by setting

$$
D=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 4
\end{array}\right)
$$

we have $A=P D{ }^{t} P$.

Exercise 3.

1. We are given that φ is a symmetric bilinear form on E. Moreover,

- φ is positive semi-definite: let $f \in E$. Then

$$
\varphi(f, f)=\int_{0}^{1} f(t)^{2} t \mathrm{~d} t
$$

and since $t \mapsto f(t)^{2} t$ is non-negative on $[0,1]$, we conclude that $\varphi(f, f) \geq 0$.

- φ is positive definite: let $f \in E$ such that $\varphi(f, f)=0$. Then, since $t \mapsto f(t)^{2} t$ is continuous and non-negative, we conclude that

$$
\forall t \in[0,1], f(t)^{2} t=0
$$

hence

$$
\forall t \in(0,1], f(t)=0
$$

and since f is continuous at 0 , we conclude that $f(0)=0$. Hence $\forall t \in[0,1], f(t)=0$, i.e., $f=0_{E}$.
2. Let $k, \ell \in \mathbb{N}$. Then

$$
\varphi\left(u_{k}, u_{\ell}\right)=\int_{0}^{1} t^{k+\ell+1} \mathrm{~d} t=\frac{1}{k+\ell+2}
$$

3. - We set $v_{0}=u_{0}$.

- We set $v_{1}=u_{1}+\lambda u_{0}$ for some $\lambda \in \mathbb{R}$. Then

$$
v_{1} \perp_{\varphi} v_{0} \Longleftrightarrow \varphi\left(v_{1}, v_{0}\right)=0 \Longleftrightarrow \varphi\left(u_{1}, u_{0}\right)+\lambda \varphi\left(u_{0}, u_{0}\right)=0 \Longleftrightarrow \lambda=-\frac{\varphi\left(u_{1}, u_{0}\right)}{\varphi\left(u_{0}, u_{0}\right)}=-\frac{1 / 3}{1 / 2}=-\frac{2}{3} .
$$

We hence set

$$
v_{1}=u_{1}-\frac{2}{3} u_{0}
$$

The family $\mathscr{B}_{1}^{\prime}=\left(v_{0}, v_{1}\right)$ is an orthogonal basis of F_{1}.
4. Let $k \in \mathbb{N}$. Since \mathscr{B}_{1}^{\prime} is an orthogonal basis of F_{1}, we have

$$
p_{1}\left(u_{3}\right)=\frac{\varphi\left(u_{3}, v_{0}\right)}{\varphi\left(v_{0}, v_{0}\right)} v_{0}+\frac{\varphi\left(u_{3}, v_{1}\right)}{\varphi\left(v_{1}, v_{1}\right)} v_{1} .
$$

Now,

$$
\begin{aligned}
& \varphi\left(u_{3}, v_{1}\right)=\varphi\left(u_{3}, u_{1}\right)-\frac{2}{3} \varphi\left(u_{3}, u_{0}\right)=\frac{1}{6}-\frac{2}{3} \frac{1}{5}=\frac{1}{30} \\
& \varphi\left(v_{1}, v_{1}\right)=\varphi\left(u_{1}, u_{1}\right)-\frac{4}{3} \varphi\left(u_{0}, u_{1}\right)+\frac{4}{9} \varphi\left(u_{0}, u_{0}\right)=\frac{1}{4}-\frac{4}{3} \times \frac{1}{3}+\frac{4}{9} \times \frac{1}{2}=\frac{1}{36} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
p_{1}\left(u_{3}\right) & =\frac{1 / 5}{1 / 2} v_{0}+\frac{1 / 30}{1 / 36} v_{1} \\
& =\frac{2}{5} v_{0}+\frac{6}{5} v_{1} \\
& =\frac{2}{5} u_{0}+\frac{6}{5}\left(u_{1}-\frac{2}{3} u_{0}\right) \\
& =-\frac{2}{5} u_{0}+\frac{6}{5} u_{1} .
\end{aligned}
$$

5.

$$
\begin{aligned}
\min _{(a, b) \in \mathbb{R}^{2}} \int_{0}^{1}\left(t^{3}-a t-b\right)^{2} t \mathrm{~d} t & =\min _{(a, b) \in \mathbb{R}^{2}}\left\|u_{3}-a u_{1}-u_{0}\right\|_{\varphi}^{2} \\
& =\min _{v \in F_{1}}\left\|u_{3}-v\right\|_{\varphi}^{2} \\
& =\left\|u_{3}-p_{1}\left(u_{3}\right)\right\|_{\varphi}^{2} \quad \text { by the property of the orthogonal projection } \\
& =\left\|u_{3}\right\|_{\varphi}^{2}-\left\|p_{1}\left(u_{3}\right)\right\|_{\varphi}^{2} \quad \text { by the Pythagorean Theorem } \\
& =\frac{1}{8}-\left\|\frac{2}{5} v_{0}+\frac{6}{5} v_{1}\right\|_{\varphi}^{2} \\
& =\frac{1}{8}-\left\|\frac{2}{5} v_{0}\right\|_{\varphi}^{2}-\left\|\frac{6}{5} v_{1}\right\|_{\varphi}^{2} \quad \text { by the Pythagorean Theorem } \\
& =\frac{1}{8}-\frac{4}{25} \times \frac{1}{2}-\frac{36}{25} \times \frac{1}{36} \\
& =\frac{1}{200} .
\end{aligned}
$$

Exercise 4.

Part I

1. Let $u_{0}, h \in E$. Recall that

$$
q\left(u_{0}+h\right)=q\left(u_{0}\right)+2 \varphi\left(u_{0}, h\right)+q(h)
$$

and that, since β is linear, $\beta\left(u_{0}+h\right)=\beta\left(u_{0}\right)+\beta(h)$. Hence

$$
f\left(u_{0}+h\right)=q\left(u_{0}+h\right)+\beta(h)=q\left(u_{0}\right)+2 \varphi\left(u_{0}, h\right)+q(h)+\beta\left(u_{0}\right)+\beta(h),
$$

as required.
2. Since φ is a bilinear form, φ is linear with respect to its second argument. We hence recognize $\mu_{u_{0}}$ as a linear combination of two linear maps; hence $\mu_{u_{0}}$ is linear. Now let $h \in E$ and denote by $H=[h]_{\text {std }}$ its coordinates in the standard basis std of E. Then

$$
\mu_{u_{0}}(h)=2 \varphi\left(u_{0}, h\right)+\beta(h)=2^{t} U_{0} A H+B H=\left(2^{t} U_{0} A+B\right) H,
$$

hence the matrix of $\mu_{u_{0}}$ in the standard basis std of E is

$$
M_{u_{0}}=\left[\mu_{u_{0}}\right]_{\mathrm{std}}=2^{t} U_{0} A+B
$$

3. a) Let $u_{0} \in E$. Then

$$
\begin{array}{rlr}
\mu_{u_{0}}=\mathbf{0} & \Longleftrightarrow M_{u_{0}}=\mathbf{0} & \\
& \Longleftrightarrow 2^{t} U_{0} A+B=\mathbf{0} & \\
& \Longleftrightarrow{ }^{t} U_{0} A=-\frac{1}{2} B & \\
& \Longleftrightarrow{ }^{t} A U_{0}=-\frac{1}{2}{ }^{t} B & \\
& \Longleftrightarrow A U_{0}=-\frac{1}{2}{ }^{t} B & \\
& \Longleftrightarrow \text { sincestion 2 }^{t}\left({ }^{t} U_{0} A\right)={ }^{t} A U_{0} \\
& \Longleftrightarrow U_{0}=-\frac{1}{2} A^{-1 t} B &
\end{array}
$$

Hence there exists a unique $u_{0} \in E$ such that $\mu_{u_{0}}=\mathbf{0}$, namely the element $u_{0} \in E$ such that

$$
U_{0}=\left[u_{0}\right]_{\mathrm{std}}=-\frac{1}{2} A^{-1 t} B
$$

b) Let $h \in E$. Then, by Question 1 ,

$$
f\left(u_{0}+h\right)=q(h)+2 \varphi\left(u_{0}, h\right)+\beta(h)+q\left(u_{0}\right)+\beta\left(u_{0}\right)=q(h)+\mu_{u_{0}}(h)+q\left(u_{0}\right)+\beta\left(u_{0}\right) .
$$

Now, u_{0} is such that $\mu_{u_{0}}(h)=0$, so that

$$
f\left(u_{0}+h\right)=q(h)+q\left(u_{0}\right)+\beta\left(u_{0}\right) .
$$

Also, $0=\mu_{u_{0}}\left(u_{0}\right)=2 q\left(u_{0}\right)+\beta\left(u_{0}\right)$, hence $\beta\left(u_{0}\right)=-2 q\left(u_{0}\right)$, hence

$$
f\left(u_{0}+h\right)=q(h)+q\left(u_{0}\right)-2 q\left(u_{0}\right)=q(h)-q\left(u_{0}\right) .
$$

Part II

1. We set

$$
\begin{aligned}
& q: \mathbb{R}^{2} \longrightarrow \quad \mathbb{R} \quad \text { and } \quad \beta: \mathbb{R}^{2} \longrightarrow \quad \mathbb{R} \\
& (x, y) \longmapsto 13 x^{2}+10 x y+13 y^{2} \quad(x, y) \longmapsto 26 \sqrt{2} x+10 \sqrt{2} y .
\end{aligned}
$$

Clearly q is a quadratic form (since q is a homogeneous polynomial of degree 2) and β is linear. It is also clear that

$$
\forall u \in \mathbb{R}^{2}, f(u)=q(u)+\beta(u) .
$$

2. We first observe that $A=[q]_{\text {std }}=\left(\begin{array}{cc}13 & 5 \\ 5 & 13\end{array}\right)$ satisfies $\operatorname{det} A=169-25=144 \neq 0$, hence A is invertible, hence we can apply the result of Question 3 in Part I.
We know that $u_{0}=\left(x_{0}, y_{0}\right)$ satisfies

$$
\binom{x_{0}}{y_{0}}=-\frac{1}{2} A^{-1 t} B
$$

where

$$
A=\left(\begin{array}{cc}
13 & 5 \\
5 & 13
\end{array}\right) \quad \text { and } \quad B=(26 \sqrt{2} \quad 10 \sqrt{2})
$$

Now,

$$
A^{-1}=\frac{1}{144}\left(\begin{array}{cc}
13 & -5 \\
-5 & 13
\end{array}\right)
$$

hence

$$
\binom{x_{0}}{y_{0}}=-\frac{1}{2 \times 144}\left(\begin{array}{cc}
13 & -5 \\
-5 & 13
\end{array}\right)\binom{26 \sqrt{2}}{10 \sqrt{2}}=-\frac{\sqrt{2}}{144}\left(\begin{array}{cc}
13 & -5 \\
-5 & 13
\end{array}\right)\binom{13}{5}=-\frac{\sqrt{2}}{144}\binom{144}{0}=\binom{-\sqrt{2}}{0} .
$$

Hence $u_{0}=(-\sqrt{2}, 0)$.
3. 8 and 18 are eigenvalues of A since

$$
A-8 I_{3}=\left(\begin{array}{ll}
5 & 5 \\
5 & 5
\end{array}\right) \quad \text { and } \quad A-18 I_{3}=\left(\begin{array}{cc}
-5 & 5 \\
5 & -5
\end{array}\right)
$$

and these matrices are not invertible. It is now clear that

$$
X_{8}=\binom{1}{-1}, X_{18}=\binom{1}{1}
$$

are eigenvectors of A associated with the eigenvalues 8 and 18 respectively. We set $v_{1}=(1 / \sqrt{2},-1 / \sqrt{2})$ and $v_{2}=(1 / \sqrt{2}, 1 / \sqrt{2})$. It is clear that $\mathscr{B}^{\prime}=\left(v_{1}, v_{2}\right)$ is an orthonormal (with respect to the standard dot product of \mathbb{R}^{2}) basis of \mathbb{R}^{2} and that

$$
[q]_{\mathscr{B}^{\prime}}=A^{\prime}=\left(\begin{array}{cc}
8 & 0 \\
0 & 18
\end{array}\right)
$$

4. Let $\left[u_{0}\right]_{\mathscr{B}^{\prime}}=\binom{x_{0}^{\prime}}{y_{0}^{\prime}}$ be the coordinates of u_{0} in the basis \mathscr{B}^{\prime}. Then, for $u=(x, y) \in \mathbb{R}^{2}$ with coordinates $[u]_{\mathscr{B}^{\prime}}=\binom{x^{\prime}}{y^{\prime}}$ we obtain, from Question 3b of Part I:

$$
f(u)=q\left(u-u_{0}\right)-q\left(u_{0}\right)=8\left(x^{\prime}-x_{0}^{\prime}\right)^{2}+18\left(y^{\prime}-y_{0}^{\prime}\right)^{2}-q\left(u_{0}\right) .
$$

Now, $q\left(u_{0}\right)=13 \times(-\sqrt{2})^{2}+10 \times(-\sqrt{2}) \times 0+13 \times 0^{2}=26$, hence

$$
f(u)=8\left(x^{\prime}-x_{0}^{\prime}\right)^{2}+18\left(y^{\prime}-y_{0}^{\prime}\right)^{2}-26 .
$$

Hence
$u \in(C) \Longleftrightarrow 8\left(x^{\prime}-x_{0}^{\prime}\right)^{2}+18\left(y^{\prime}-y_{0}^{\prime}\right)^{2}-26=46 \Longleftrightarrow 8\left(x^{\prime}-x_{0}^{\prime}\right)^{2}+18\left(y^{\prime}-y_{0}^{\prime}\right)^{2}=72 \Longleftrightarrow \frac{\left(x^{\prime}-x_{0}^{\prime}\right)^{2}}{9}+\frac{\left(y^{\prime}-y_{0}^{\prime}\right)^{2}}{4}=1$ as required.
5. See Figure 8.

Figure 8. Ellipse (C) of Exercise 4

