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Exercise 1.

1. The function f is continuous on the closed and bounded set C hence, by the Extreme Value Theorem, f is
bounded and attains its bounds.

2. We determine the critical points of f in C̊: Let (x, y) ∈ C̊. Then:

∂1f(x, y) = 4x3 − 4, ∂2f(x, y) = 4y3 − 1

2
,

hence

(x, y) is a critical point of f ⇐⇒
{

4x3 − 4 = 0

4y3 − 1/2 = 0
⇐⇒ (x, y) = (1, 1/2).

We now study the Hessian matrix of f at this critical point: for (x, y) ∈ C,

∂2
1,1f(x, y) = 12x2, ∂2

1,2f(x, y) = 0, ∂2
2,2f(x, y) = 12y2,

hence the Hessian matrix of f at (1, 1/2) is

H(1,1/2)f =

(

12 0
0 3

)

.

Its signature is (2, 0), hence f possesses a local minimum at (1, 1/2), and f(1, 1/2) = −51/16.

We now study f on ∂C:

• On the lower horizontal side [0, 2]× {0}:

∀x ∈ [0, 2], ϕ(x) = f(x, 0) = x4 − 4x.

We study the extreme values of ϕ:
ϕ′(x) = 4x3 − 4,

hence ϕ possesses a unique critical point at 1, and ϕ(1) = −3. Moreover, ϕ(0) = 0 and ϕ(2) = 8, hence
the minimum value of f on this side is −3 and its maximum is 8.

• On the upper horizontal side [0, 2]× {2}:

∀x ∈ [0, 2], ϕ(x) = f(x, 2) = x4 + 16− 4x− 1 = x4 − 4x+ 15.

This is just a shifted version of the previous case, hence the minimum value of f on this side is 12 and
its maximum is 23.

• On the left vertical side {0} × [0, 2]:

∀y ∈ [0, 2], ϕ(x) = f(0, y) = y4 − y

2
.

We study the extreme values of ϕ:

ϕ′(y) = 4y3 − 1

2
,

hence ϕ possesses a unique critical points at 1/2 and ϕ(1/2) = −3/16. Moreover, ϕ(0) = 0 and ϕ(2) = 15,
hence the minimum value of f on this side is −3/16 and its maximum value is 15.

• On the right vertical side {2} × [0, 2]:

∀y ∈ [0, 2], ϕ(x) = f(2, y) = 16 + y4 − 8− y

2
= y4 − y

2
+ 8.

This is just a shifted version of the previous case, hence the minimum value of f on this side is
−3/16 + 8 = 125/16 and its maximum value is 23.



Conclusion: the minimum value of f on C is −51/16 and is attained at (1, 1/2) and the maximum value of f
on C is 23 and is attained at (2, 2).

Exercise 2.

1. 1 is an obvious eigenvalue of A since

rk(A− I3) = rk





1 −1 −1
−1 1 1
−1 1 1



 = 1

and we conclude that its multiplicity is 3−rk(A−I3) = 2 (since A is diagonalizable since A is a real symmetric
matrix). We use the trace to determine the other eigenvalue:

tr(A) = 6 = 1 + 1 + other eigenvalue

hence 4 is the other eigenvalue of A.

We know that the eigenspaces of A are orthogonal; now the equation of the eigenspace E1 associated with
the eigenvalue 1 is

(E1) x− y − z = 0

from which we read that X4 =





1
−1
−1



 ∈ E⊥
1 , hence X4 is an eigenvalue associated with the eigenvalue 4.

We now pick a random (non-nil) vector in E1, say X1 =





1
1
0



. We use the cross-product to produce another

vector in E⊥
4 = E1, orthogonal to X1:

Y1 = X4 ×X1 =





1
−1
−1



×





1
1
0



 =





1
−1
2





At this point, we know that (X1, Y1, X4) is an orthogonal family. We define the matrix

P =





1/
√
2 1/

√
6 1/

√
3

1/
√
2 −1/

√
6 −1/

√
3

0 2/
√
6 −1/

√
3



 ,

obtained by stacking the vectors X1, Y1, X4 divided by their respective norm, so that P is an orthogonal
matrix, and by setting

D =





1 0 0
0 1 0
0 0 4





we have A = P D tP .

Exercise 3.

1. We are given that ϕ is a symmetric bilinear form on E. Moreover,

• ϕ is positive semi-definite: let f ∈ E. Then

ϕ(f, f) =

∫ 1

0

f(t)2t dt,

and since t 7→ f(t)2t is non-negative on [0, 1], we conclude that ϕ(f, f) ≥ 0.

• ϕ is positive definite: let f ∈ E such that ϕ(f, f) = 0. Then, since t 7→ f(t)2t is continuous and
non-negative, we conclude that

∀t ∈ [0, 1], f(t)2t = 0,

hence
∀t ∈ (0, 1], f(t) = 0,

and since f is continuous at 0, we conclude that f(0) = 0. Hence ∀t ∈ [0, 1], f(t) = 0, i.e., f = 0E .



2. Let k, ℓ ∈ N. Then

ϕ(uk, uℓ) =

∫ 1

0

tk+ℓ+1 dt =
1

k + ℓ+ 2
.

3. • We set v0 = u0.

• We set v1 = u1 + λu0 for some λ ∈ R. Then

v1 ⊥ϕ v0 ⇐⇒ ϕ(v1, v0) = 0 ⇐⇒ ϕ(u1, u0) + λϕ(u0, u0) = 0 ⇐⇒ λ = −ϕ(u1, u0)

ϕ(u0, u0)
= −1/3

1/2
= −2

3
.

We hence set

v1 = u1 −
2

3
u0.

The family B
′
1 = (v0, v1) is an orthogonal basis of F1.

4. Let k ∈ N. Since B
′
1 is an orthogonal basis of F1, we have

p1(u3) =
ϕ(u3, v0)

ϕ(v0, v0)
v0 +

ϕ(u3, v1)

ϕ(v1, v1)
v1.

Now,

ϕ(u3, v1) = ϕ(u3, u1)−
2

3
ϕ(u3, u0) =

1

6
− 2

3

1

5
=

1

30

ϕ(v1, v1) = ϕ(u1, u1)−
4

3
ϕ(u0, u1) +

4

9
ϕ(u0, u0) =

1

4
− 4

3
× 1

3
+

4

9
× 1

2
=

1

36
.

Hence

p1(u3) =
1/5

1/2
v0 +

1/30

1/36
v1

=
2

5
v0 +

6

5
v1

=
2

5
u0 +

6

5

(

u1 −
2

3
u0

)

= −2

5
u0 +

6

5
u1.

5.

min
(a,b)∈R2

∫ 1

0

(

t3 − at− b
)2
t dt = min

(a,b)∈R2

‖u3 − au1 − u0‖2ϕ

= min
v∈F1

‖u3 − v‖2ϕ

= ‖u3 − p1(u3)‖2ϕ by the property of the orthogonal projection

= ‖u3‖2ϕ − ‖p1(u3)‖2ϕ by the Pythagorean Theorem

=
1

8
−
∥

∥

∥

∥

2

5
v0 +

6

5
v1

∥

∥

∥

∥

2

ϕ

=
1

8
−
∥

∥

∥

∥

2

5
v0

∥

∥

∥

∥

2

ϕ

−
∥

∥

∥

∥

6

5
v1

∥

∥

∥

∥

2

ϕ

by the Pythagorean Theorem

=
1

8
− 4

25
× 1

2
− 36

25
× 1

36

=
1

200
.

Exercise 4.

Part I

1. Let u0, h ∈ E. Recall that
q(u0 + h) = q(u0) + 2ϕ(u0, h) + q(h)



and that, since β is linear, β(u0 + h) = β(u0) + β(h). Hence

f(u0 + h) = q(u0 + h) + β(h) = q(u0) + 2ϕ(u0, h) + q(h) + β(u0) + β(h),

as required.

2. Since ϕ is a bilinear form, ϕ is linear with respect to its second argument. We hence recognize µu0
as a linear

combination of two linear maps; hence µu0
is linear. Now let h ∈ E and denote by H = [h]std its coordinates

in the standard basis std of E. Then

µu0
(h) = 2ϕ(u0, h) + β(h) = 2 tU0AH +BH =

(

2 tU0A+B
)

H,

hence the matrix of µu0
in the standard basis std of E is

Mu0
= [µu0

]std = 2 tU0A+B.

3. a) Let u0 ∈ E. Then

µu0
= 0 ⇐⇒ Mu0

= 0

⇐⇒ 2 tU0A+B = 0 by Question 2

⇐⇒ tU0A = −1

2
B

⇐⇒ tAU0 = −1

2
tB since

t(tU0A
)

= tAU0

⇐⇒ AU0 = −1

2
tB since A is symmetric

⇐⇒ U0 = −1

2
A−1 tB since A is invertible

Hence there exists a unique u0 ∈ E such that µu0
= 0, namely the element u0 ∈ E such that

U0 = [u0]std = −1

2
A−1 tB.

b) Let h ∈ E. Then, by Question 1,

f(u0 + h) = q(h) + 2ϕ(u0, h) + β(h) + q(u0) + β(u0) = q(h) + µu0
(h) + q(u0) + β(u0).

Now, u0 is such that µu0
(h) = 0, so that

f(u0 + h) = q(h) + q(u0) + β(u0).

Also, 0 = µu0
(u0) = 2q(u0) + β(u0), hence β(u0) = −2q(u0), hence

f(u0 + h) = q(h) + q(u0)− 2q(u0) = q(h)− q(u0).

Part II

1. We set
q : R

2 −→ R

(x, y) 7−→ 13x2 + 10xy + 13y2
and β : R

2 −→ R

(x, y) 7−→ 26
√
2x+ 10

√
2y.

Clearly q is a quadratic form (since q is a homogeneous polynomial of degree 2) and β is linear. It is also
clear that

∀u ∈ R
2, f(u) = q(u) + β(u).

2. We first observe that A = [q]std =

(

13 5
5 13

)

satisfies detA = 169 − 25 = 144 6= 0, hence A is invertible,

hence we can apply the result of Question 3 in Part I.

We know that u0 = (x0, y0) satisfies
(

x0

y0

)

= −1

2
A−1 tB



where

A =

(

13 5
5 13

)

and B =
(

26
√
2 10

√
2
)

.

Now,

A−1 =
1

144

(

13 −5
−5 13

)

hence

(

x0

y0

)

= − 1

2× 144

(

13 −5
−5 13

)(

26
√
2

10
√
2

)

= −
√
2

144

(

13 −5
−5 13

)(

13
5

)

= −
√
2

144

(

144
0

)

=

(

−
√
2

0

)

.

Hence u0 = (−
√
2, 0).

3. 8 and 18 are eigenvalues of A since

A− 8I3 =

(

5 5
5 5

)

and A− 18I3 =

(

−5 5
5 −5

)

and these matrices are not invertible. It is now clear that

X8 =

(

1
−1

)

, X18 =

(

1
1

)

are eigenvectors of A associated with the eigenvalues 8 and 18 respectively. We set v1 = (1/
√
2,−1/

√
2) and

v2 = (1/
√
2, 1/

√
2). It is clear that B

′ = (v1, v2) is an orthonormal (with respect to the standard dot product
of R2) basis of R2 and that

[q]B′ = A′ =

(

8 0
0 18

)

.

4. Let [u0]B′ =

(

x′
0

y′0

)

be the coordinates of u0 in the basis B
′. Then, for u = (x, y) ∈ R

2 with coordinates

[u]B′ =

(

x′

y′

)

we obtain, from Question 3b of Part I:

f(u) = q(u− u0)− q(u0) = 8(x′ − x′
0)

2 + 18(y′ − y′0)
2 − q(u0).

Now, q(u0) = 13× (−
√
2)2 + 10× (−

√
2)× 0 + 13× 02 = 26, hence

f(u) = 8(x′ − x′
0)

2 + 18(y′ − y′0)
2 − 26.

Hence

u ∈ (C) ⇐⇒ 8(x′−x′
0)

2+18(y′−y′0)
2−26 = 46 ⇐⇒ 8(x′−x′

0)
2+18(y′−y′0)

2 = 72 ⇐⇒ (x′ − x′
0)

2

9
+
(y′ − y′0)

2

4
= 1

as required.

5. See Figure 8.
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Figure 8. Ellipse (C) of Exercise 4


