No documents, no calculators, no cell phones or electronic devices allowed but you may keep your pet blobfish for moral support.
All your answers must be fully justified, unless noted otherwise.

Exercise 1. Let $C=[0,2] \times[0,2]$. We define the function f as

$$
\begin{aligned}
f: C & \longrightarrow \\
(x, y) & \longmapsto x^{4}+y^{4}-4 x-\frac{y}{2} .
\end{aligned}
$$

1. Explain why f possesses a global minimum and a global maximum.
2. Determine the value of $\min _{C} f$ and of $\max _{C} f$.

Exercise 2. Let

$$
A=\left(\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & 1 \\
-1 & 1 & 2
\end{array}\right),
$$

and let q be the quadratic form on \mathbb{R}^{3} such that $[q]_{\text {std }}=A$, and let φ be the polar form of q.

1. Find an orthogonal matrix P and a diagonal matrix D such that $A=P D{ }^{t} P$.
2. Is φ an inner product on \mathbb{R}^{3} ?

Exercise 3. Let $E=C([0,1])$ be the real vector space that consists of all real-valued continuous functions on $[0,1]$. We define the symmetric bilinear form φ on E as:

$$
\begin{aligned}
\varphi: E \times E & \longrightarrow \\
(f, g) & \longmapsto \int_{0}^{1} f(\mathbf{t}) g(\mathbf{t}) \mathbf{t d t}
\end{aligned}
$$

(mind the lonely t in the integral). For $k \in \mathbb{N}$ we define the element $u_{k} \in E$ as:

$$
\begin{aligned}
u_{k}:[0,1] & \longrightarrow \mathbb{R} \\
t & \longmapsto t^{k} .
\end{aligned}
$$

We define

$$
F_{1}=\operatorname{Span}\left\{u_{0}, u_{1}\right\},
$$

so that F_{1} consists of all polynomial functions on $[0,1]$ of degree non-greater than 1 . You're given that $\mathscr{B}_{1}=\left(u_{0}, u_{1}\right)$ is a basis of F_{1} (i.e., that the vectors u_{0} and u_{1} are independent).

1. Show that φ is an inner product on E.
2. Let $k, \ell \in \mathbb{N}$. Compute the value of $\varphi\left(u_{k}, u_{\ell}\right)$.
3. Use the Gram-Schmidt process to obtain, from the basis $\mathscr{B}_{1}=\left(u_{0}, u_{1}\right)$, an orthogonal (with respect to φ) basis $\mathscr{B}_{1}^{\prime}=\left(v_{0}, v_{1}\right)$ of F_{1}.
4. Let $p_{1}: E \rightarrow F_{1}$ be the orthogonal (with respect to φ) projection onto F_{1}. Determine, $p_{1}\left(u_{3}\right)$.
5. Deduce the value of

$$
m=\min _{(a, b) \in \mathbb{R}^{2}} \int_{0}^{1}\left(\mathrm{t}^{3}-a \mathbf{t}-b\right)^{2} \mathrm{tdt} .
$$

Exercise 4. The two parts of this exercise are not independent: Part II uses the result of Part I.

Part I

Let $n \geq 2$ and let $E=\mathbb{R}^{n}$.
Let q be a quadratic form on E and let $\varphi: E \times E \rightarrow \mathbb{R}$ be its polar form. We denote by $A=[q]_{\text {std }}=[\varphi]_{\text {std }}$ the matrix of q (and hence of φ) in the standard basis std of E.
Let $\beta: E \rightarrow \mathbb{R}$ be a linear map. We denote by $B=[\beta]_{\text {std }}$ the matrix of β in the standard basis std of E.
We set

$$
\begin{aligned}
f: & E \longrightarrow \mathbb{R} \\
& u \mapsto q(u)+\beta(u) .
\end{aligned}
$$

1. Show that

$$
\forall u_{0}, h \in E, \quad f\left(u_{0}+h\right)=q(h)+2 \varphi\left(u_{0}, h\right)+\beta(h)+q\left(u_{0}\right)+\beta\left(u_{0}\right) .
$$

2. Let $u_{0} \in E$. We denote by $U_{0}=\left[u_{0}\right]_{\text {std }}$ its coordinates in the standard basis std of E. Briefly explain why the mapping

$$
\begin{aligned}
\mu_{u_{0}}: & E \longrightarrow \quad \mathbb{R} \\
& h \longmapsto 2 \varphi\left(u_{0}, h\right)+\beta(h)
\end{aligned}
$$

is linear, and give its matrix $M_{u_{0}}=\left[\mu_{u_{0}}\right]_{\text {std }}$ in the standard basis std of E, in terms of $A=[\varphi]_{\text {std }}, B=[\beta]_{\text {std }}$ and $U_{0}=\left[u_{0}\right]_{\text {std }}$.
3. In this question we assume that q is non-degenerate, i.e., that the matrix $A=[q]_{\text {std }}$ is invertible.
a) Show that there exists a unique $u_{0} \in E$ such that $\mu_{u_{0}}=\mathbf{0}$. Explicit the expression of U_{0} in terms of A and B.
b) Deduce that

$$
\forall h \in E, f\left(u_{0}+h\right)=q(h)-q\left(u_{0}\right),
$$

where u_{0} is the element obtained in Question 3 Hint: you may find useful to use the fact that $\mu_{u_{0}}\left(u_{0}\right)=0$.

Part II

Let

$$
\begin{aligned}
f: \mathbb{R}^{2} & \longrightarrow \\
(x, y) & \longmapsto 13 x^{2}+10 x y+13 y^{2}+26 \sqrt{2} x+10 \sqrt{2} y .
\end{aligned}
$$

Let (\mathscr{C}) be the curve of \mathbb{R}^{2} defined by

$$
\begin{equation*}
f(x, y)=46 \text {. } \tag{C}
\end{equation*}
$$

1. Explicit the quadratic form q on \mathbb{R}^{2} and the linear form β on \mathbb{R}^{2} such that

$$
\forall u \in \mathbb{R}^{2}, f(u)=q(u)+\beta(u) .
$$

2. Find, using the results of Part I , the unique element $u_{0}=\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ such that

$$
\forall(x, y) \in \mathbb{R}^{2}, f(x, y)=q\left(x-x_{0}, y-y_{0}\right)-q\left(x_{0}, y_{0}\right)
$$

3. Determine an orthonormal basis $\mathscr{B}^{\prime}=\left(v_{1}, v_{2}\right)$ (with respect to the standard dot product of \mathbb{R}^{2}) such that the matrix of q in \mathscr{B}^{\prime} is

$$
[q]_{\mathscr{B}^{\prime}}=A^{\prime}=\left(\begin{array}{cc}
8 & 0 \\
0 & 18
\end{array}\right) .
$$

4. Explain why the equation of (\mathscr{C}) in \mathscr{B}^{\prime} is

$$
\frac{\left(x^{\prime}-x_{0}^{\prime}\right)^{2}}{3^{2}}+\frac{\left(y^{\prime}-y_{0}^{\prime}\right)^{2}}{2^{2}}=1,
$$

where the coordinates of $u_{0}=\left(x_{0}, y_{0}\right)$ in \mathscr{B}^{\prime} are $\left[u_{0}\right]_{\mathscr{B}^{\prime}}=\binom{x_{0}^{\prime}}{y_{0}^{\prime}}$.
5. Plot the curve (\mathscr{C}). Hint: start by plotting the point u_{0} and the axes corresponding to \mathscr{B}^{\prime} that pass through u_{0}.

