

No documents, no calculators, no cell phones or electronic devices allowed but you may keep your pet blobfish for moral support.

All your answers must be fully justified, unless noted otherwise.

Exercise 1. Let $C = [0, 2] \times [0, 2]$. We define the function f as

$$f: C \longrightarrow \mathbb{R}$$

(x, y) $\longmapsto x^4 + y^4 - 4x - \frac{y}{2}.$

1. Explain why f possesses a global minimum and a global maximum.

2. Determine the value of $\min_{C} f$ and of $\max_{C} f$.

Exercise 2. Let

$$A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & 1 \\ -1 & 1 & 2 \end{pmatrix},$$

and let *q* be the quadratic form on \mathbb{R}^3 such that $[q]_{std} = A$, and let φ be the polar form of *q*.

- 1. Find an orthogonal matrix *P* and a diagonal matrix *D* such that $A = P D^{t} P$.
- 2. Is φ an inner product on \mathbb{R}^3 ?

Exercise 3. Let E = C([0, 1]) be the real vector space that consists of all real-valued continuous functions on [0, 1]. We define the symmetric bilinear form φ on *E* as:

$$\varphi : E \times E \longrightarrow \mathbb{R}$$

(f,g) $\longmapsto \int_0^1 f(\mathbf{t}) g(\mathbf{t}) \mathbf{t} \, \mathrm{d} \mathbf{t}$

(mind the lonely **t** in the integral). For $k \in \mathbb{N}$ we define the element $u_k \in E$ as:

$$u_k : [0,1] \longrightarrow \mathbb{R}$$
$$t \longmapsto t^k.$$

We define

$$F_1 = \operatorname{Span}\{u_0, u_1\},$$

so that F_1 consists of all polynomial functions on [0, 1] of degree non-greater than 1. You're given that $\mathscr{B}_1 = (u_0, u_1)$ is a basis of F_1 (i.e., that the vectors u_0 and u_1 are independent).

- 1. Show that φ is an inner product on *E*.
- 2. Let $k, \ell \in \mathbb{N}$. Compute the value of $\varphi(u_k, u_\ell)$.
- 3. Use the Gram-Schmidt process to obtain, from the basis $\mathscr{B}_1 = (u_0, u_1)$, an orthogonal (with respect to φ) basis $\mathscr{B}'_1 = (v_0, v_1)$ of F_1 .
- 4. Let $p_1 : E \to F_1$ be the orthogonal (with respect to φ) projection onto F_1 . Determine, $p_1(u_3)$.
- 5. Deduce the value of

$$m = \min_{(a,b)\in\mathbb{R}^2}\int_0^1 \left(\mathbf{t}^3 - a\mathbf{t} - b\right)^2 \mathbf{t}\,\mathrm{d}\mathbf{t}.$$

Exercise 4. The two parts of this exercise are not independent: Part II uses the result of Part I.

Part I

Let $n \ge 2$ and let $E = \mathbb{R}^n$.

Let *q* be a quadratic form on *E* and let $\varphi : E \times E \to \mathbb{R}$ be its polar form. We denote by $A = [q]_{std} = [\varphi]_{std}$ the matrix of *q* (and hence of φ) in the standard basis std of *E*.

Let $\beta : E \to \mathbb{R}$ be a linear map. We denote by $B = [\beta]_{std}$ the matrix of β in the standard basis std of *E*. We set

$$f : E \longrightarrow \mathbb{R}$$
$$u \longmapsto q(u) + \beta(u)$$

1. Show that

$$\forall u_0, h \in E, \qquad f(u_0 + h) = q(h) + 2\varphi(u_0, h) + \beta(h) + q(u_0) + \beta(u_0)$$

2. Let $u_0 \in E$. We denote by $U_0 = [u_0]_{std}$ its coordinates in the standard basis std of *E*. Briefly explain why the mapping

$$\begin{array}{rcl} \mu_{u_0} & \colon & E \longrightarrow & \mathbb{R} \\ & & h \longmapsto 2\varphi(u_0,h) + \beta(h) \end{array}$$

is linear, and give its matrix $M_{u_0} = [\mu_{u_0}]_{\text{std}}$ in the standard basis std of *E*, in terms of $A = [\varphi]_{\text{std}}$, $B = [\beta]_{\text{std}}$ and $U_0 = [u_0]_{\text{std}}$.

- 3. In this question we assume that q is non-degenerate, i.e., that the matrix $A = [q]_{std}$ is invertible.
 - a) Show that there exists a unique $u_0 \in E$ such that $\mu_{u_0} = 0$. Explicit the expression of U_0 in terms of A and B.
 - b) Deduce that

$$\forall h \in E, f(u_0 + h) = q(h) - q(u_0),$$

where u_0 is the element obtained in Question 3a. *Hint: you may find useful to use the fact that* $\mu_{u_0}(u_0) = 0$.

Part II Let

Lei

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
$$(x, y) \longmapsto 13x^2 + 10xy + 13y^2 + 26\sqrt{2}x + 10\sqrt{2}y.$$

Let (\mathscr{C}) be the curve of \mathbb{R}^2 defined by

 $(\mathscr{C}) f(x,y) = 46.$

1. Explicit the quadratic form q on \mathbb{R}^2 and the linear form β on \mathbb{R}^2 such that

$$\forall u \in \mathbb{R}^2, \ f(u) = q(u) + \beta(u)$$

2. Find, using the results of Part I, the unique element $u_0 = (x_0, y_0) \in \mathbb{R}^2$ such that

$$\forall (x,y) \in \mathbb{R}^2, \ f(x,y) = q(x-x_0,y-y_0) - q(x_0,y_0).$$

3. Determine an orthonormal basis $\mathscr{B}' = (v_1, v_2)$ (with respect to the standard dot product of \mathbb{R}^2) such that the matrix of *q* in \mathscr{B}' is

$$[q]_{\mathscr{B}'} = A' = \begin{pmatrix} 8 & 0\\ 0 & 18 \end{pmatrix}$$

4. Explain why the equation of (\mathscr{C}) in \mathscr{B}' is

$$\frac{(x'-x_0')^2}{3^2} + \frac{(y'-y_0')^2}{2^2} = 1,$$

where the coordinates of $u_0 = (x_0, y_0)$ in \mathscr{B}' are $[u_0]_{\mathscr{B}'} = \begin{pmatrix} x'_0 \\ y'_0 \end{pmatrix}$.

5. Plot the curve (\mathscr{C}). *Hint: start by plotting the point* u_0 *and the axes corresponding to* \mathscr{B}' *that pass through* u_0 .