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Exercise 1.

1. First observe that since the improper integral I is convergent, we have:

lim
n→+∞

∫ xn

0

f(t) dt = I and lim
n→+∞

∫ yn

0

f(t) dt = I.

Now, for n ∈ N,
∫ yn

xn

f(t) dt =

∫ yn

0

f(t) dt −

∫ xn

0

f(t) dt,

hence

lim
n→+∞

∫ yn

xn

f(t) dt = I − I = 0.

2. We first show that the improper integral

J =

∫ +∞

0

e−t2 dt

is convergent: the function t 7→ e−t2 is continuous on R+, hence the improper integral J is improper at +∞.

Now, for t ∈ [1,+∞), −t2 ≤ −t, hence 0 ≤ e−t2 ≤ e−t. We know that the improper integral
∫ +∞

1

e−t dt

converges hence, by the comparison test, the improper integral J converges too. Since

lim
n→+∞

n = +∞ and lim
n→+∞

en = +∞

we conclude, by Question 1, that ℓ = 0.

3. Define the sequences (xn)n∈N and (yn)n∈N by:

∀n ∈ N, xn = 2nπ, yn = (2n+ 1)π.

Clearly,
lim

n→+∞
xn = +∞ and lim

n→+∞
yn = +∞.

Now, let n ∈ N and let t ∈ [xn, yn]. Since t ≥ 0 and sin(t) ≥ 0 we have et sin(t) ≥ 1. Hence,
∫ yn

xn

et sin(t) dt ≥

∫ yn

xn

dt = π X−→
n→+∞

0.

Hence, by (the contrapositive of) Question 1, the improper integral (K) diverges.

Exercise 2.

1. Let α ∈ R
∗
+. One has:

∀x ∈ [0,+∞), fα(x)
2 =

1

(1 + x)2α

f(x)
√

1 + f ′
α(x)

2 =
1

(1 + x)α

√

1 +
α2

(1 + x)2α+2

The functions f2
α and f

√

1 + (f ′
α)

2 being continuous on [0,+∞), the improper integrals Cα and Dα are
improper at +∞. Now, by Riemann at +∞, we know that Cα converges if and only if 2α > 1, i.e., if and
only if α > 1/2. Also,

f(x)
√

1 + f ′
α(x)

2 ∼
x→+∞

1

xα
> 0,

hence, by the equivalent test and Riemann’s criterion at +∞, Dα diverges if and only if α ≤ 1. We hence
conclude that

Cα converges and Dα diverges ⇐⇒ α ∈ (1/2, 1].



2. A trumpet can be filled with paint if it has a finite volume, and can be painted if it has a finite surface area.
Taking the trumpet obtained by rotating the graph of fα about the origin yields a paradoxical trumpet when
α ∈ [1/2, 1), since its volume is 2πCα (which is finite), yet its surface area is:

lim
A→+∞

2π

∫ 2A

0

fα(x)
√

1 + f ′
α(x)

2 dx = +∞

(the limit is +∞ since we obtain a divergent improper integral of a non-negative function).

Exercise 3.

1. Let f ∈ E. Since f is bounded, there exists M ∈ R such that

∀x ∈ R+,
∣
∣f(x)

∣
∣ ≤ M

(in fact, we can choose M = ‖f‖∞). Then,

∀t ∈ R+, 0 ≤
∣
∣f(t)

∣
∣e−t ≤ Me−t.

Now, we know that the improper integral
∫ +∞

0

e−t dt

converges, hence, by the comparison test, the improper integral

∫ +∞

0

∣
∣f(t)

∣
∣e−t dt

converges too.

2. • Let f ∈ E such that N(f) = 0. Then, since the function t 7→
∣
∣f(t)

∣
∣e−t is continuous and non-negative,

we conclude that
∀t ∈ R+,

∣
∣f(t)

∣
∣e−t = 0,

hence f = 0E .

• Let f, g ∈ E. Then,

N(f + g) =

∫ +∞

0

∣
∣f(t) + g(t)

∣
∣e−t dt.

By the triangle inequality (for the absolute value), we know that

∀t ∈ R+,
∣
∣f(t) + g(t)

∣
∣e−t ≤

∣
∣f(t)

∣
∣e−t +

∣
∣g(t)

∣
∣e−t,

hence (since all the integrals are convergent),

N(f + g) =

∫ +∞

0

∣
∣f(t) + g(t)

∣
∣e−t dt ≤

∫ +∞

0

∣
∣f(t)

∣
∣e−t dt+

∫ +∞

0

∣
∣g(t)

∣
∣e−t dt = N(f) +N(g).

• Let f ∈ E and λ ∈ R. Then:

N(λf) =

∫ +∞

0

∣
∣λf(t)

∣
∣e−t dt = |λ|

∫ +∞

0

∣
∣f(t)

∣
∣e−t dt = |λ|N(f).

Hence N is a norm on E.

3. a) Let n ∈ N. Then,

N(fn − 0E) =

∫ +∞

0

fn(t)e
−t dt =

∫ +∞

0

e−(n+1)t dt =
1

n+ 1
−→

n→+∞
0.

Hence the sequence (fn)n∈N converges to 0E for the norm N .

b) Let n ∈ N. Then,
‖fn − 0E‖∞ = sup

t∈R+

∣
∣fn(t)

∣
∣ = sup

t∈R+

e−(n+1)t = 1 X−→
n→+∞

0,

hence the sequence (fn)n∈N doesn’t converge to 0E for the norm ‖·‖∞.



4. The two norms N and ‖·‖∞ are not equivalent for otherwise the sequence (fn)n∈N would have the same
convergence for both norms, but this is not the case as shown by Questions 3a) and 3b).

Exercise 4.

1. Define the mapping
ϕ : R

2 −→ R
2

(x, y) 7−→ (x− 2y, x+ y).

Clearly, the mapping ϕ is an endomorphism of R2 (linearity is obvious). Now, the matrix of ϕ in the standard
basis of R2 is

[ϕ]std =

(
1 −2
1 1

)

,

the determinant of which is det[ϕ]std = 3 6= 0. Hence ϕ is invertible. Since

∀u ∈ R
2, N(u) =

∥
∥ϕ(u)

∥
∥
∞
,

we conclude (ϕ being an invertible linear mapping) that N is a norm on R
2.

2. Moreover, we know that closed the unit ball B of N is obtained from the closed unit ball B∞ of ‖·‖∞ by
applying ϕ−1:

B = ϕ−1
(
B∞

)
.

Now, the matrix of ϕ−1 in the standard basis of R2 is:

[ϕ−1]std = [ϕstd]
−1 =

(
1 −2
1 1

)−1

=
1

3

(
1 2
−1 1

)

.

The ball B∞ is the symmetric parallelogram with vertices (1, 1) and (1,−1), hence the ball B is the symmetric
parallelogram with vertices (1, 0) and (−1/3,−2/3). See figure 1.
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Figure 1. Closed unit ball B of N , of Exercise 4

Exercise 5.

1. • Let u ∈ E such that N(u) = 0. Then, N1(u) + N2(u) = 0, and since N1(u) ≥ 0 and N2(u) ≥ 0, we
conclude that N1(u) = N2(u) = 0 hence, since N1 is a norm, u = 0E .

• Let u, v ∈ E. Then,

N(u+ v) = N1(u+ v) +N2(u+ v)

≤ N1(u) +N1(v) +N2(u) +N2(v) by the triangle inequality of N1 and N2

= N1(u) +N2(u) + N1(v) +N2(v) = N(u) +N(v).



• Let u ∈ E and λ ∈ R. Then,

N(λu) = N1(λu) +N2(λu) = |λ|N1(u) + |λ|N2(u) = |λ|
(
N1(u) +N2(u)

)
= |λ|N(u).

2. B ⊂ B1. Indeed, let u ∈ B. This means that N(u) ≤ 1, i.e., that N1(u) +N2(u) ≤ 1. Since N2(u) ≥ 0, we
conclude that N1(u) ≤ 1, hence u ∈ B1.

3. If the norms N1 and N2 are equivalent, there exists α, β ∈ R
∗
+ such that

αN1 ≤ N2 ≤ βN1.

Hence, adding N1 to all three terms of this inequality yields

N1 + αN1 ≤ N1 +N2 ≤ N1 + βN1,

i.e.,
(α+ 1)N1 ≤ N ≤ (β + 1)N1,

and since α+ 1 > 0 and β + 1 > 0, we conclude that N and N1 are equivalent.

Exercise 6. Let (x, y) ∈ R
2 \

{
(0, 0)

}
. Then,

∣
∣f(x, y)

∣
∣ =

∣
∣
∣
∣

x|y|3/2

x2 + y2

∣
∣
∣
∣
=

|x||y|3/2
∥
∥(x, y)

∥
∥
2

2

≤

∥
∥(x, y)

∥
∥
5/2

2
∥
∥(x, y)

∥
∥
2

2

=
∥
∥(x, y)

∥
∥
1/2

−→
‖(x,y)‖2→0

0,

where we have used the useful inequalities

|x| ≤
∥
∥(x, y)

∥
∥
2

and |y| ≤
∥
∥(x, y)

∥
∥
2
.

Hence
lim

(x,y)→(0,0)
f(x, y) = 0.

Exercise 7. Let P ∈ E, say P = aX2 + bX + c. Then

Φ(P ) = (2aX + b)2 = 4a2X2 + 4abX + b2.

Now let P0 ∈ E and H ∈ E, say P0 = a0X
2 + b0X + c0 and H = αX2 + βX + γ. Then

Φ(P0 +H) = 4(a0 + α)2X2 + 4(a0 + α)(b0 + β)X + (b0 + β)2

= 4a20X
2 + 4a0b0X + b20

︸ ︷︷ ︸

Φ(P0)

+ 8a0αX
2 + 4(a0β + b0α)X + 2b0β

︸ ︷︷ ︸

linear wrt H

+ 4α2X2 + 4αβX + β2

︸ ︷︷ ︸

remainder

.

We choose a norm on E (since E is a finite dimensional vector space, all norms are equivalent), let’s call it N ,
defined by:

∀a, b, c ∈ R, N
(
aX2 + bX + c) =

√

a2 + b2 + c2.

Clearly, N is a norm, as it is the 2-norm associated with the standard basis of E. For H = αX2 + βX + γ 6= 0E ,

N(remainder)

N(H)
=

√

16α4 + 16α2β2 + β4

√

α2 + β2 + γ2

≤

√

16α4 + 32α2β2 + 16β4

√

α2 + β2

=
4

√
(
α2 + β2

)2

√

α2 + β2

= 4
√

α2 + β2

≤ 4
√

α2 + β2 + γ2

≤ 4N(H) −→
H→0

0.

Hence, Φ is differentiable at P0 and

DP0
H : E −→ E

αX2 + βX + γ 7−→ 8a0αX
2 + 4(a0β + b0α)X + 2b0β.


