Exercise 1.

1. First observe that since the improper integral I is convergent, we have:

$$
\lim _{n \rightarrow+\infty} \int_{0}^{x_{n}} f(t) \mathrm{d} t=I \text { and } \lim _{n \rightarrow+\infty} \int_{0}^{y_{n}} f(t) \mathrm{d} t=I .
$$

Now, for $n \in \mathbb{N}$,

$$
\int_{x_{n}}^{y_{n}} f(t) \mathrm{d} t=\int_{0}^{y_{n}} f(t) \mathrm{d} t-\int_{0}^{x_{n}} f(t) \mathrm{d} t,
$$

hence

$$
\lim _{n \rightarrow+\infty} \int_{x_{n}}^{y_{n}} f(t) \mathrm{d} t=I-I=0 .
$$

2. We first show that the improper integral

$$
J=\int_{0}^{+\infty} \mathrm{e}^{-t^{2}} \mathrm{~d} t
$$

is convergent: the function $t \mapsto \mathrm{e}^{-t^{2}}$ is continuous on \mathbb{R}_{+}, hence the improper integral J is improper at $+\infty$. Now, for $t \in[1,+\infty),-t^{2} \leq-t$, hence $0 \leq \mathrm{e}^{-t^{2}} \leq \mathrm{e}^{-t}$. We know that the improper integral

$$
\int_{1}^{+\infty} e^{-t} d t
$$

converges hence, by the comparison test, the improper integral J converges too. Since

$$
\lim _{n \rightarrow+\infty} n=+\infty \text { and } \lim _{n \rightarrow+\infty} \mathrm{e}^{n}=+\infty
$$

we conclude, by Question 1 , that $\ell=0$.
3. Define the sequences $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ by:

$$
\forall n \in \mathbb{N}, x_{n}=2 n \pi, \quad y_{n}=(2 n+1) \pi .
$$

Clearly,

$$
\lim _{n \rightarrow+\infty} x_{n}=+\infty \text { and } \lim _{n \rightarrow+\infty} y_{n}=+\infty .
$$

Now, let $n \in \mathbb{N}$ and let $t \in\left[x_{n}, y_{n}\right]$. Since $t \geq 0$ and $\sin (t) \geq 0$ we have $\mathrm{e}^{t \sin (t)} \geq 1$. Hence,

$$
\int_{x_{n}}^{y_{n}} \mathrm{e}^{t \sin (t)} \mathrm{d} t \geq \int_{x_{n}}^{y_{n}} \mathrm{~d} t=\pi \underset{n \rightarrow+\infty}{\rightarrow} 0 .
$$

Hence, by (the contrapositive of) Question 1, the improper integral (K) diverges.

Exercise 2.

1. Let $\alpha \in \mathbb{R}_{+}^{*}$. One has:

$$
\begin{aligned}
\forall x \in[0,+\infty), & f_{\alpha}(x)^{2}
\end{aligned}=\frac{1}{(1+x)^{2 \alpha}}, ~(x) \sqrt{1+f_{\alpha}^{\prime}(x)^{2}}=\frac{1}{(1+x)^{\alpha}} \sqrt{1+\frac{\alpha^{2}}{(1+x)^{2 \alpha+2}}}
$$

The functions f_{α}^{2} and $f \sqrt{1+\left(f_{\alpha}^{\prime}\right)^{2}}$ being continuous on $[0,+\infty)$, the improper integrals C_{α} and D_{α} are improper at $+\infty$. Now, by Riemann at $+\infty$, we know that C_{α} converges if and only if $2 \alpha>1$, i.e., if and only if $\alpha>1 / 2$. Also,

$$
f(x) \sqrt{1+f_{\alpha}^{\prime}(x)^{2}} \underset{x \rightarrow+\infty}{\sim} \frac{1}{x^{\alpha}}>0,
$$

hence, by the equivalent test and Riemann's criterion at $+\infty, D_{\alpha}$ diverges if and only if $\alpha \leq 1$. We hence conclude that

$$
C_{\alpha} \text { converges and } D_{\alpha} \text { diverges } \Longleftrightarrow \alpha \in(1 / 2,1] .
$$

2. A trumpet can be filled with paint if it has a finite volume, and can be painted if it has a finite surface area. Taking the trumpet obtained by rotating the graph of f_{α} about the origin yields a paradoxical trumpet when $\alpha \in[1 / 2,1)$, since its volume is $2 \pi C_{\alpha}$ (which is finite), yet its surface area is:

$$
\lim _{A \rightarrow+\infty} 2 \pi \int_{0}^{2 A} f_{\alpha}(x) \sqrt{1+f_{\alpha}^{\prime}(x)^{2}} \mathrm{~d} x=+\infty
$$

(the limit is $+\infty$ since we obtain a divergent improper integral of a non-negative function).

Exercise 3.

1. Let $f \in E$. Since f is bounded, there exists $M \in \mathbb{R}$ such that

$$
\forall x \in \mathbb{R}_{+},|f(x)| \leq M
$$

(in fact, we can choose $M=\|f\|_{\infty}$). Then,

$$
\forall t \in \mathbb{R}_{+}, \quad 0 \leq|f(t)| \mathrm{e}^{-t} \leq M \mathrm{e}^{-t}
$$

Now, we know that the improper integral

$$
\int_{0}^{+\infty} \mathrm{e}^{-t} \mathrm{~d} t
$$

converges, hence, by the comparison test, the improper integral

$$
\int_{0}^{+\infty}|f(t)| \mathrm{e}^{-t} \mathrm{~d} t
$$

converges too.
2. - Let $f \in E$ such that $N(f)=0$. Then, since the function $t \mapsto|f(t)| \mathrm{e}^{-t}$ is continuous and non-negative, we conclude that

$$
\forall t \in \mathbb{R}_{+},|f(t)| \mathrm{e}^{-t}=0
$$

hence $f=0_{E}$.

- Let $f, g \in E$. Then,

$$
N(f+g)=\int_{0}^{+\infty}|f(t)+g(t)| \mathrm{e}^{-t} \mathrm{~d} t
$$

By the triangle inequality (for the absolute value), we know that

$$
\forall t \in \mathbb{R}_{+},|f(t)+g(t)| \mathrm{e}^{-t} \leq|f(t)| \mathrm{e}^{-t}+|g(t)| \mathrm{e}^{-t}
$$

hence (since all the integrals are convergent),

$$
N(f+g)=\int_{0}^{+\infty}|f(t)+g(t)| \mathrm{e}^{-t} \mathrm{~d} t \leq \int_{0}^{+\infty}|f(t)| \mathrm{e}^{-t} \mathrm{~d} t+\int_{0}^{+\infty}|g(t)| \mathrm{e}^{-t} \mathrm{~d} t=N(f)+N(g)
$$

- Let $f \in E$ and $\lambda \in \mathbb{R}$. Then:

$$
N(\lambda f)=\int_{0}^{+\infty}|\lambda f(t)| \mathrm{e}^{-t} \mathrm{~d} t=|\lambda| \int_{0}^{+\infty}|f(t)| \mathrm{e}^{-t} \mathrm{~d} t=|\lambda| N(f)
$$

Hence N is a norm on E.
3. a) Let $n \in \mathbb{N}$. Then,

$$
N\left(f_{n}-0_{E}\right)=\int_{0}^{+\infty} f_{n}(t) \mathrm{e}^{-t} \mathrm{~d} t=\int_{0}^{+\infty} \mathrm{e}^{-(n+1) t} \mathrm{~d} t=\frac{1}{n+1} \underset{n \rightarrow+\infty}{\longrightarrow} 0
$$

Hence the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges to 0_{E} for the norm N.
b) Let $n \in \mathbb{N}$. Then,

$$
\left\|f_{n}-0_{E}\right\|_{\infty}=\sup _{t \in \mathbb{R}_{+}}\left|f_{n}(t)\right|=\sup _{t \in \mathbb{R}_{+}} \mathrm{e}^{-(n+1) t}=1 \underset{n \rightarrow+\infty}{\rightarrow} 0,
$$

hence the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ doesn't converge to 0_{E} for the norm $\|\cdot\|_{\infty}$.
4. The two norms N and $\|\cdot\|_{\infty}$ are not equivalent for otherwise the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ would have the same convergence for both norms, but this is not the case as shown by Questions 3a) and 3b).

Exercise 4.

1. Define the mapping

$$
\begin{array}{cc}
\varphi: \mathbb{R}^{2} & \longrightarrow \mathbb{R}^{2} \\
(x, y) & \longmapsto(x-2 y, x+y) .
\end{array}
$$

Clearly, the mapping φ is an endomorphism of \mathbb{R}^{2} (linearity is obvious). Now, the matrix of φ in the standard basis of \mathbb{R}^{2} is

$$
[\varphi]_{\mathrm{std}}=\left(\begin{array}{cc}
1 & -2 \\
1 & 1
\end{array}\right)
$$

the determinant of which is $\operatorname{det}[\varphi]_{\text {std }}=3 \neq 0$. Hence φ is invertible. Since

$$
\forall u \in \mathbb{R}^{2}, N(u)=\|\varphi(u)\|_{\infty},
$$

we conclude (φ being an invertible linear mapping) that N is a norm on \mathbb{R}^{2}.
2. Moreover, we know that closed the unit ball \bar{B} of N is obtained from the closed unit ball $\overline{B_{\infty}}$ of $\|\cdot\|_{\infty}$ by applying φ^{-1} :

$$
\bar{B}=\varphi-1\left(\overline{B_{\infty}}\right) .
$$

Now, the matrix of φ^{-1} in the standard basis of \mathbb{R}^{2} is:

$$
\left[\varphi^{-1}\right]_{\mathrm{std}}=\left[\varphi_{\mathrm{std}}\right]^{-1}=\left(\begin{array}{cc}
1 & -2 \\
1 & 1
\end{array}\right)^{-1}=\frac{1}{3}\left(\begin{array}{cc}
1 & 2 \\
-1 & 1
\end{array}\right)
$$

The ball $\overline{B_{\infty}}$ is the symmetric parallelogram with vertices $(1,1)$ and $(1,-1)$, hence the ball \bar{B} is the symmetric parallelogram with vertices $(1,0)$ and $(-1 / 3,-2 / 3)$. See figure 1 .

Figure 1. Closed unit ball \bar{B} of N, of Exercise 4

Exercise 5.

1. - Let $u \in E$ such that $N(u)=0$. Then, $N_{1}(u)+N_{2}(u)=0$, and since $N_{1}(u) \geq 0$ and $N_{2}(u) \geq 0$, we conclude that $N_{1}(u)=N_{2}(u)=0$ hence, since N_{1} is a norm, $u=0_{E}$.

- Let $u, v \in E$. Then,

$$
\begin{aligned}
N(u+v) & =N_{1}(u+v)+N_{2}(u+v) \\
& \leq N_{1}(u)+N_{1}(v)+N_{2}(u)+N_{2}(v) \quad \text { by the triangle inequality of } N_{1} \text { and } N_{2} \\
& =N_{1}(u)+N_{2}(u)+N_{1}(v)+N_{2}(v)=N(u)+N(v) .
\end{aligned}
$$

- Let $u \in E$ and $\lambda \in \mathbb{R}$. Then,

$$
N(\lambda u)=N_{1}(\lambda u)+N_{2}(\lambda u)=|\lambda| N_{1}(u)+|\lambda| N_{2}(u)=|\lambda|\left(N_{1}(u)+N_{2}(u)\right)=|\lambda| N(u) .
$$

2. $\bar{B} \subset \overline{B_{1}}$. Indeed, let $u \in B$. This means that $N(u) \leq 1$, i.e., that $N_{1}(u)+N_{2}(u) \leq 1$. Since $N_{2}(u) \geq 0$, we conclude that $N_{1}(u) \leq 1$, hence $u \in \overline{B_{1}}$.
3. If the norms N_{1} and N_{2} are equivalent, there exists $\alpha, \beta \in \mathbb{R}_{+}^{*}$ such that

$$
\alpha N_{1} \leq N_{2} \leq \beta N_{1} .
$$

Hence, adding N_{1} to all three terms of this inequality yields

$$
N_{1}+\alpha N_{1} \leq N_{1}+N_{2} \leq N_{1}+\beta N_{1}
$$

i.e.,

$$
(\alpha+1) N_{1} \leq N \leq(\beta+1) N_{1}
$$

and since $\alpha+1>0$ and $\beta+1>0$, we conclude that N and N_{1} are equivalent.
Exercise 6. Let $(x, y) \in \mathbb{R}^{2} \backslash\{(0,0)\}$. Then,

$$
|f(x, y)|=\left|\frac{x|y|^{3 / 2}}{x^{2}+y^{2}}\right|=\frac{|x||y|^{3 / 2}}{\|(x, y)\|_{2}^{2}} \leq \frac{\|(x, y)\|_{2}^{5 / 2}}{\|(x, y)\|_{2}^{2}}=\|(x, y)\|^{1 / 2} \underset{\|(x, y)\|_{2} \rightarrow 0}{\longrightarrow} 0
$$

where we have used the useful inequalities

$$
|x| \leq\|(x, y)\|_{2} \text { and }|y| \leq\|(x, y)\|_{2} .
$$

Hence

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0
$$

Exercise 7. Let $P \in E$, say $P=a X^{2}+b X+c$. Then

$$
\Phi(P)=(2 a X+b)^{2}=4 a^{2} X^{2}+4 a b X+b^{2}
$$

Now let $P_{0} \in E$ and $H \in E$, say $P_{0}=a_{0} X^{2}+b_{0} X+c_{0}$ and $H=\alpha X^{2}+\beta X+\gamma$. Then

$$
\begin{aligned}
\Phi\left(P_{0}+H\right) & =4\left(a_{0}+\alpha\right)^{2} X^{2}+4\left(a_{0}+\alpha\right)\left(b_{0}+\beta\right) X+\left(b_{0}+\beta\right)^{2} \\
& =\underbrace{4 a_{0}^{2} X^{2}+4 a_{0} b_{0} X+b_{0}^{2}}_{\Phi\left(P_{0}\right)}+\underbrace{8 a_{0} \alpha X^{2}+4\left(a_{0} \beta+b_{0} \alpha\right) X+2 b_{0} \beta}_{\text {linear wrt } H}+\underbrace{4 \alpha^{2} X^{2}+4 \alpha \beta X+\beta^{2}}_{\text {remainder }} .
\end{aligned}
$$

We choose a norm on E (since E is a finite dimensional vector space, all norms are equivalent), let's call it N, defined by:

$$
\forall a, b, c \in \mathbb{R}, N\left(a X^{2}+b X+c\right)=\sqrt{a^{2}+b^{2}+c^{2}} .
$$

Clearly, N is a norm, as it is the 2-norm associated with the standard basis of E. For $H=\alpha X^{2}+\beta X+\gamma \neq 0_{E}$,

$$
\begin{aligned}
\frac{N(\text { remainder })}{N(H)} & =\frac{\sqrt{16 \alpha^{4}+16 \alpha^{2} \beta^{2}+\beta^{4}}}{\sqrt{\alpha^{2}+\beta^{2}+\gamma^{2}}} \\
& \leq \frac{\sqrt{16 \alpha^{4}+32 \alpha^{2} \beta^{2}+16 \beta^{4}}}{\sqrt{\alpha^{2}+\beta^{2}}} \\
& =\frac{4 \sqrt{\left(\alpha^{2}+\beta^{2}\right)^{2}}}{\sqrt{\alpha^{2}+\beta^{2}}} \\
& =4 \sqrt{\alpha^{2}+\beta^{2}} \\
& \leq 4 \sqrt{\alpha^{2}+\beta^{2}+\gamma^{2}} \\
& \leq 4 N(H) \underset{H \rightarrow 0}{\longrightarrow} 0 .
\end{aligned}
$$

Hence, Φ is differentiable at P_{0} and

$$
\begin{array}{ccc}
D_{P_{0}} H: & E & \longrightarrow
\end{array} \begin{gathered}
E \\
\\
\\
\alpha X^{2}+\beta X+\gamma
\end{gathered}{ }^{\longmapsto} 8 a_{0} \alpha X^{2}+4\left(a_{0} \beta+b_{0} \alpha\right) X+2 b_{0} \beta .
$$

