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Exercise 1.

1. a) For (u, v) ∈ D, eu+v ∈ R
∗

+, and since u − v > 0, ln(u − v) is well-defined and belongs to R. Hence
(

eu+v, ln(u− v)
)

is well-defined and belongs to Ω.

b) • Clearly ϕ is of class C1 (and even of class C∞).

• We now show that ϕ is a bijection (and we’ll also show have an explicit expression for ϕ−1): let
(u, v) ∈ D and (x, y) ∈ Ω. Then

ϕ(u, v) = (x, y) ⇐⇒

{

eu+v = x

ln(u− v) = y
⇐⇒

{

u+ v = ln(x)

u− v = ey
⇐⇒











u =
ln(x) + ey

2

v =
ln(x)− ey

2
.

Hence ϕ is a bijection and

ϕ−1 : Ω −→ D

(x, y) 7−→

(

ln(x) + ey

2
,
ln(x)− ey

2

)

.

• Clearly, from the form of ϕ−1 we notice that ϕ−1 is of class C1 (and even of class C∞).1

Hence ϕ is a C1-diffeomorphism.

c) i) Let (u, v) ∈ D. Then

J(u,v)ϕ =

(

eu+v eu+v

1/(u− v) −1/(u− v)

)

.

ii) Let (x, y) ∈ Ω. Then

J(x,y)(ϕ
−1) =

(

1/2x ey/2
1/2x −ey/2

)

.

iii) The relation between Jϕ and J
(

ϕ−1
)

is:

∀(u, v) ∈ D,
(

J(u,v)ϕ
)

−1
= Jϕ(u,v)

(

ϕ−1
)

or, equivalently,

∀(x, y) ∈ Ω,
(

Jϕ−1(x,y)ϕ
)

−1
= J(x,y)

(

ϕ−1
)

We show the first relation: For (u, v) ∈ D,

(

J(u,v)ϕ
)

−1
= −

u− v

2eu+v

(

−1/(u− v) −eu+v

−1/(u− v) eu+v

)

=

(

1/2eu+v (u− v)/2
1/2eu+v −(u− v)/2

)

,

and

Jϕ(u,v)

(

ϕ−1
)

= J(eu+v,ln(u−v))

(

ϕ−1
)

=

(

1/2eu+v (u− v)/2
1/2eu+v −(u− v)/2

)

.

2. Let f : Ω → R and define g : D → R by g = f ◦ ϕ. Since ϕ is a C1-diffeomorphism, we know that f is of
class C1 if and only if g is of class C1. We assume that f is of class C1.

Observe that we have:
∀(u, v) ∈ D, g(u, v) = f

(

eu+v, ln(u− v)
)

,

hence, for (u, v) ∈ D, set (x, y) = ϕ(u, v), and it follows from the Chain Rule that

∂2g(u, v) = eu+v∂1f(x, y)− 1/(u− v)∂2f(x, y) = x∂1f(x, y)− e−y∂2f(x, y).

Hence

f is a solution of (∗) ⇐⇒ ∀(x, y) ∈ Ω, x∂1f(x, y)− e−y∂2f(x, y)− 3f(x, y) = 0

⇐⇒ ∀(u, v) ∈ D, ∂2g(u, v)− 3g(u, v) = 0

⇐⇒ ∃A : R → R of class C1, ∀(u, v) ∈ D, g(u, v) = A(u)e3v

⇐⇒ ∃A : R → R of class C1, ∀(x, y) ∈ Ω, f(x, y) = A
(

ln(x) + ey
)

e3
(

ln(x)−ey
)

/2.
1We could also have computed the Jacobian matrix of ϕ and used the GIFT, but this is asked in the next question.



Exercise 2.

1. Since U is simply-connected, we only need to show that ω is closed. Notice that since f is of class C2, ω is
of class C1. Denoting by P1 and P2 the components of ω, namely, P1 = −∂2f and P2 = ∂1f we have:

∂2P1 = −∂2
2,2f = ∂2

1,1f = ∂1P2

where we used the fact that f is harmonic in the middle equality. Hence ω is closed; moreover, since ω is
of class C1, by Poincaré’s Lemma, ω is exact and there exists a function g : U → R of class C2 such that
dg = ω. Of course, g can be chosen such that g(0, 0) = 0 (for otherwise, take g − g(0, 0) instead).

2. Notice that ∂1g = −∂2f and ∂2g = ∂1f . Hence,

∂2
1,1g + ∂2

2,2g = −∂2
1,2f + ∂2

2,1f = 0,

by Schwarz’ Lemma, since f is of class C2. Hence g is harmonic.

3. a) Notice that:

f(0, 0) = g(0, 0) = 0, ∂1g(0, 0) = −∂2f(0, 0), ∂2g(0, 0) = ∂1f(0, 0),

∂2
1,1g(0, 0) = −∂2

1,2f(0, 0), ∂2
1,2g(0, 0) = −∂2

2,2f(0, 0) = ∂2
1,1f(0, 0), ∂2

2,2g(0, 0) = ∂2
1,2f(0, 0),

We’ll use these equalities in the sequel. By the second-order Taylor–Young expansion of f and g at (0, 0)
we have (using f(0, 0) = g(0, 0) = 0):

xf(x, y) + yg(x, y) =
(x,y)→(0,0)

x

(

x∂1f(0, 0) + y∂2f(0, 0)

+
1

2

(

x2∂2
1,1f(0, 0) + 2xy∂2

1,2f(0, 0) + y2∂2
2,2f(0, 0)

)

+ o
(

x2 + y2
)

)

+ y

(

x∂1g(0, 0) + y∂2g(0, 0)

+
1

2

(

x2∂2
1,1g(0, 0) + 2xy∂2

1,2g(0, 0) + y2∂2
2,2g(0, 0)

)

+ o
(

x2 + y2
)

)

=
(x,y)→(0,0)

x2∂1f(0, 0) + xy∂2f(0, 0) +
1

2

(

x3∂2
1,1f(0, 0) + 2x2y∂2

1,2f(0, 0) + xy2∂2
2,2f(0, 0)

)

+ xy∂1g(0, 0) + y2∂2g(0, 0) +
1

2

(

x2y∂2
1,1g(0, 0) + 2xy2∂2

1,2g(0, 0) + y3∂2
2,2g(0, 0)

)

+ o
(

(

x2 + y2
)3/2

)

=
(x,y)→(0,0)

x2∂1f(0, 0) + xy∂2f(0, 0) +
1

2

(

x3∂2
1,1f(0, 0) + 2x2y∂2

1,2f(0, 0)− xy2∂2
1,1f(0, 0)

)

− xy∂2f(0, 0) + y2∂1f(0, 0) +
1

2

(

−x2y∂2
1,2f(0, 0) + 2xy2∂2

1,1f(0, 0) + y3∂2
1,2f(0, 0)

)

+ o
(

(

x2 + y2
)3/2

)

=
(x,y)→(0,0)

(

x2 + y2
)

∂1f(0, 0) +
1

2

(

x3∂2
1,1f(0, 0) +

(

x2y + y3
)

∂2
1,2f(0, 0) + xy2∂2

1,1f(0, 0)
)

+ o
(

(

x2 + y2
)3/2

)

=
(x,y)→(0,0)

(

x2 + y2
)

∂1f(0, 0) +
1

2

(

x2 + y2
)(

x∂2
1,1f(0, 0) + y∂2

1,2f(0, 0)
)

+ o
(

(

x2 + y2
)3/2

)

.

Hence,

u(x, y) =
(x,y)→(0,0)

∂1f(0, 0) +
1

2

(

x∂2
1,1f(0, 0) + y∂2

1,2f(0, 0)
)

+ o
(

(

x2 + y2
)1/2

)

,

as required.



b) Define the mapping
α : R

2 −→ R

(x, y) 7−→
∂2
1,1f(0, 0)

2
x+

∂2
1,2f(0, 0)

2
y.

Clearly α is linear, and it follows from the previous question that

u(x, y)− u(0, 0)− α(x, y)
∥

∥(x, y)
∥

∥

2

=
(x,y)→(0,0)

o(1) −→
(x,y)→(0,0)

0,

hence u is differentiable at (0, 0) and d(0,0)u = α.

Exercise 3.

1. Let x, y) ∈ R
2. Then:

∂1f(x, y) = y3g′
(

xy2
)

, ∂2f(x, y) = g
(

xy2
)

+ 2xy2g′
(

xy2
)

,

∂2
1,1f(x, y) = y5g′′

(

xy2
)

, ∂2
1,2f(x, y) = 3y2g′

(

xy2
)

+ 2xy4g′′
(

xy2
)

, ∂2
2,2f(x, y) = 6xyg′

(

xy2
)

+ 4x2y3g′′
(

xy2
)

.

2. We hence have:

f(2, 1) = g(2) = 3, ∂1f(2, 1) = g′(2) = −1, ∂2f(2, 1) = g(2) + 4g′(2)

= 3− 4 = −1,

∂2
1,1f(2, 1) = g′′(2) = 1, ∂2

1,2f(2, 1) = 3g′(2) + 4g′′(2) ∂2
2,2f(2, 1) = 12g′(2) + 16g′′(2)

= −3 + 4 = 1, = −12 + 16 = 4.

and hence

f(2 + h, 1 + k) =
(h,k)→(0,0)

3− h− k +
1

2
h2 + hk + 2k2 + o

(

h2 + k2
)

.

3. The gradient of f at (2, 1) gives a normal vector to C at (2, 1). Now,
−→
∇f(2, 1) = (−1,−1), hence an equation

of ∆ is:
(∆) − (x− 2)− (y − 1) = 0.

4. a) Since f(2, 1) = 3, we must have ϕ(2) = 1. Moreover, differentiating (∗∗) yields

∀x ∈ R, ∂1f
(

x, ϕ(x)
)

+ ϕ′(x)∂2f
(

x, ϕ(x)
)

= 0,

hence
∂1f

(

2, ϕ(2)
)

+ ϕ′(2)∂2f
(

2, ϕ(2)
)

= 0,

hence, since ϕ(2) = 1, we must have −1− ϕ′(2) = 0, and hence

ϕ′(2) = −1.

Differentiating again we obtain

∀x ∈ R, ∂2
1,1f

(

x, ϕ(x)
)

+ 2ϕ′(x)∂2
1,2f

(

x, ϕ(x)
)

+ ϕ′′(x)∂2f
(

x, ϕ(x)
)

+ ϕ′(x)2∂2
2,2f

(

x, ϕ(x)
)

= 0.

and hence, evaluating at x = 2 and using ϕ(2) = 1 and ϕ′(2) = −1 we obtain: ϕ′′(2) = 3.

b) Hence the Taylor–Young expansion of ϕ at 2 is

ϕ(2 + h) =
h→0

1− h+
3

2
h2 + o

(

h2
)

,

and we conclude that C lies above its tangent line in a neighborhood of (2, 1). See figure 2.

Exercise 4.

1. a) Let (x, y) ∈ (−1, 1)× R. Since x ∈ (−1, 1) we have x2 < 1 and hence x4 ≤ x2. Hence

x2 + y4 ≥ x4 + y4 =
∥

∥(x, y)
∥

∥

4

4
.
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Figure 2. Sketch of the curve C and ∆ of Exercise 3 in a neighborhood of (2, 1)

b) Hence, for (x, y) ∈ R
2 \

{

(0, 0)
}

,

∣

∣f(x, y)− f(0, 0)
∣

∣ = f(x, y) ≤

∥

∥(x, y)
∥

∥

9/2

2
∥

∥(x, y)
∥

∥

4

4

.

Now, since R
2 is a finite-dimensional vector space, the 2-norm and the 4-norm are equivalent; in particular,

there exists α > 0 such that ‖·‖2 ≤ α‖·‖4, hence

∣

∣f(x, y)− f(0, 0)
∣

∣ ≤

∥

∥(x, y)
∥

∥

9/2

2
∥

∥(x, y)
∥

∥

4

4

≤
α9/2

∥

∥(x, y)
∥

∥

9/2

4
∥

∥(x, y)
∥

∥

4

4

= α9/2
∥

∥(x, y)
∥

∥

1/2

4
−→

(x,y)→(0,0)
0,

and we conclude that f is continuous at (0, 0).

2. Let h ∈ R
∗. Then

f(h, 0)− f(0, 0)

h
=

|h|9/2

h3
=

|h|5/2

h
= |h|3/2

|h|

h
−→
h→0

0,

since |h|/h remains bounded and |h|3/2 −→
h→0

0. Hence ∂1f(0, 0) exists and ∂1f(0, 0) = 0.

Let h ∈ R
∗. Then

f(0, h)− f(0, 0)

h
=

|h|9/2

h5
=

|h|1/2

h
,

the limit of which doesn’t exist as h → 0 (it’s easy to see that the right-sided limit yields +∞). Hence
∂2f(0, 0) doesn’t exist.

Since ∂2f(0, 0) doesn’t exist, f is not differentiable at (0, 0).

3. Let (α, β) ∈ R
2 \

{

(0, 0)
}

and let t ∈ R
∗. Then

f(tα, tβ)− f(0, 0)

t
=

(

t2α2 + t2β2
)9/4

t
(

t2α2 + t4β4
) =

|t|9/2
(

α2 + β2
)9/4

t3
(

α2 + t2β4
) =

|t|5/2
(

α2 + β2
)9/4

t
(

α2 + t2β4
)

=



















|t|5/2
(

α2 + β2
)9/4

t
(

α2 + t2β4
) if α 6= 0

|t|1/2|β|9/2

tβ4
if α = 0

−→
t→0

{

0 if α 6= 0

DNE if α = 0.

Hence the directional derivatives of f at (0, 0) exist in all direction except in a direction of the form (0, β)
for β ∈ R

∗.


