Exercise 1.

1. a) For $(u, v) \in D, \mathrm{e}^{u+v} \in \mathbb{R}_{+}^{*}$, and since $u-v>0, \ln (u-v)$ is well-defined and belongs to \mathbb{R}. Hence $\left(\mathrm{e}^{u+v}, \ln (u-v)\right)$ is well-defined and belongs to Ω.
b) - Clearly φ is of class C^{1} (and even of class C^{∞}).

- We now show that φ is a bijection (and we'll also show have an explicit expression for φ^{-1}): let $(u, v) \in D$ and $(x, y) \in \Omega$. Then

$$
\varphi(u, v)=(x, y) \Longleftrightarrow\left\{\begin{array} { l }
{ \mathrm { e } ^ { u + v } = x } \\
{ \operatorname { l n } (u - v) = y }
\end{array} \Longleftrightarrow \left\{\begin{array} { l }
{ u + v = \operatorname { l n } (x) } \\
{ u - v = \mathrm { e } ^ { y } }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
u=\frac{\ln (x)+\mathrm{e}^{y}}{\ln (2}-\mathrm{e}^{y} \\
v=\frac{\ln (x)^{2}}{2}
\end{array}\right.\right.\right.
$$

Hence φ is a bijection and

$$
\begin{aligned}
\varphi^{-1}: \Omega & \longrightarrow \\
(x, y) & \longmapsto\left(\frac{\ln (x)+\mathrm{e}^{y}}{2}, \frac{\ln (x)-\mathrm{e}^{y}}{2}\right) .
\end{aligned}
$$

- Clearly, from the form of φ^{-1} we notice that φ^{-1} is of class C^{1} (and even of class C^{∞}). ${ }^{1}$

Hence φ is a C^{1}-diffeomorphism.
c) i) Let $(u, v) \in D$. Then

$$
J_{(u, v)} \varphi=\left(\begin{array}{cc}
\mathrm{e}^{u+v} & \mathrm{e}^{u+v} \\
1 /(u-v) & -1 /(u-v)
\end{array}\right) .
$$

ii) Let $(x, y) \in \Omega$. Then

$$
J_{(x, y)}\left(\varphi^{-1}\right)=\left(\begin{array}{cc}
1 / 2 x & \mathrm{e}^{y} / 2 \\
1 / 2 x & -\mathrm{e}^{y} / 2
\end{array}\right) .
$$

iii) The relation between $J \varphi$ and $J\left(\varphi^{-1}\right)$ is:

$$
\forall(u, v) \in D,\left(J_{(u, v)} \varphi\right)^{-1}=J_{\varphi(u, v)}\left(\varphi^{-1}\right)
$$

or, equivalently,

$$
\forall(x, y) \in \Omega, \quad\left(J_{\varphi^{-1}(x, y)} \varphi\right)^{-1}=J_{(x, y)}\left(\varphi^{-1}\right)
$$

We show the first relation: For $(u, v) \in D$,

$$
\left(J_{(u, v)} \varphi\right)^{-1}=-\frac{u-v}{2 \mathrm{e}^{u+v}}\left(\begin{array}{cc}
-1 /(u-v) & -\mathrm{e}^{u+v} \\
-1 /(u-v) & \mathrm{e}^{u+v}
\end{array}\right)=\left(\begin{array}{cc}
1 / 2 \mathrm{e}^{u+v} & (u-v) / 2 \\
1 / 2 \mathrm{e}^{u+v} & -(u-v) / 2
\end{array}\right),
$$

and

$$
J_{\varphi(u, v)}\left(\varphi^{-1}\right)=J_{\left(\mathrm{e}^{u+v}, \ln (u-v)\right)}\left(\varphi^{-1}\right)=\left(\begin{array}{cc}
1 / 2 \mathrm{e}^{u+v} & (u-v) / 2 \\
1 / 2 \mathrm{e}^{u+v} & -(u-v) / 2
\end{array}\right) .
$$

2. Let $f: \Omega \rightarrow \mathbb{R}$ and define $g: D \rightarrow \mathbb{R}$ by $g=f \circ \varphi$. Since φ is a C^{1}-diffeomorphism, we know that f is of class C^{1} if and only if g is of class C^{1}. We assume that f is of class C^{1}.
Observe that we have:

$$
\forall(u, v) \in D, g(u, v)=f\left(\mathrm{e}^{u+v}, \ln (u-v)\right),
$$

hence, for $(u, v) \in D$, set $(x, y)=\varphi(u, v)$, and it follows from the Chain Rule that

$$
\partial_{2} g(u, v)=\mathrm{e}^{u+v} \partial_{1} f(x, y)-1 /(u-v) \partial_{2} f(x, y)=x \partial_{1} f(x, y)-\mathrm{e}^{-y} \partial_{2} f(x, y)
$$

Hence

$$
\begin{aligned}
f \text { is a solution of }(*) & \Longleftrightarrow \forall(x, y) \in \Omega, x \partial_{1} f(x, y)-\mathrm{e}^{-y} \partial_{2} f(x, y)-3 f(x, y)=0 \\
& \Longleftrightarrow \forall(u, v) \in D, \partial_{2} g(u, v)-3 g(u, v)=0 \\
& \Longleftrightarrow \exists A: \mathbb{R} \rightarrow \mathbb{R} \text { of class } C^{1}, \forall(u, v) \in D, g(u, v)=A(u) \mathrm{e}^{3 v} \\
& \Longleftrightarrow \exists A: \mathbb{R} \rightarrow \mathbb{R} \text { of class } C^{1}, \forall(x, y) \in \Omega, f(x, y)=A\left(\ln (x)+\mathrm{e}^{y}\right) \mathrm{e}^{3\left(\ln (x)-\mathrm{e}^{y}\right) / 2} .
\end{aligned}
$$

[^0]
Exercise 2.

1. Since U is simply-connected, we only need to show that ω is closed. Notice that since f is of class C^{2}, ω is of class C^{1}. Denoting by P_{1} and P_{2} the components of ω, namely, $P_{1}=-\partial_{2} f$ and $P_{2}=\partial_{1} f$ we have:

$$
\partial_{2} P_{1}=-\partial_{2,2}^{2} f=\partial_{1,1}^{2} f=\partial_{1} P_{2}
$$

where we used the fact that f is harmonic in the middle equality. Hence ω is closed; moreover, since ω is of class C^{1}, by Poincaré's Lemma, ω is exact and there exists a function $g: U \rightarrow \mathbb{R}$ of class C^{2} such that $\mathrm{d} g=\omega$. Of course, g can be chosen such that $g(0,0)=0$ (for otherwise, take $g-g(0,0)$ instead).
2. Notice that $\partial_{1} g=-\partial_{2} f$ and $\partial_{2} g=\partial_{1} f$. Hence,

$$
\partial_{1,1}^{2} g+\partial_{2,2}^{2} g=-\partial_{1,2}^{2} f+\partial_{2,1}^{2} f=0
$$

by Schwarz' Lemma, since f is of class C^{2}. Hence g is harmonic.
3. a) Notice that:

$$
\begin{array}{rlrl}
f(0,0) & =g(0,0)=0, & \partial_{1} g(0,0) & =-\partial_{2} f(0,0), \\
\partial_{1,1}^{2} g(0,0) & =-\partial_{1,2}^{2} f(0,0), & \partial_{1,2}^{2} g(0,0) & =-\partial_{2,2}^{2} f(0,0)=\partial_{1,1}^{2} f(0,0), \\
\partial_{2,2}^{2} g(0,0) & =\partial_{1,2}^{2} f(0,0),
\end{array}
$$

We'll use these equalities in the sequel. By the second-order Taylor-Young expansion of f and g at $(0,0)$ we have (using $f(0,0)=g(0,0)=0)$:

$$
\begin{aligned}
& x f(x, y)+y g(x, y) \underset{(x, y) \rightarrow(0,0)}{=} x\left(x \partial_{1} f(0,0)+y \partial_{2} f(0,0)\right. \\
& \left.+\frac{1}{2}\left(x^{2} \partial_{1,1}^{2} f(0,0)+2 x y \partial_{1,2}^{2} f(0,0)+y^{2} \partial_{2,2}^{2} f(0,0)\right)+o\left(x^{2}+y^{2}\right)\right) \\
& +y\left(x \partial_{1} g(0,0)+y \partial_{2} g(0,0)\right. \\
& \left.+\frac{1}{2}\left(x^{2} \partial_{1,1}^{2} g(0,0)+2 x y \partial_{1,2}^{2} g(0,0)+y^{2} \partial_{2,2}^{2} g(0,0)\right)+o\left(x^{2}+y^{2}\right)\right) \\
& \underset{(x, y) \rightarrow(0,0)}{=} x^{2} \partial_{1} f(0,0)+x y \partial_{2} f(0,0)+\frac{1}{2}\left(x^{3} \partial_{1,1}^{2} f(0,0)+2 x^{2} y \partial_{1,2}^{2} f(0,0)+x y^{2} \partial_{2,2}^{2} f(0,0)\right) \\
& +x y \partial_{1} g(0,0)+y^{2} \partial_{2} g(0,0)+\frac{1}{2}\left(x^{2} y \partial_{1,1}^{2} g(0,0)+2 x y^{2} \partial_{1,2}^{2} g(0,0)+y^{3} \partial_{2,2}^{2} g(0,0)\right) \\
& +o\left(\left(x^{2}+y^{2}\right)^{3 / 2}\right) \\
& \underset{(x, y) \rightarrow(0,0)}{=} x^{2} \partial_{1} f(0,0)+x y \partial_{2} f(0,0)+\frac{1}{2}\left(x^{3} \partial_{1,1}^{2} f(0,0)+2 x^{2} y \partial_{1,2}^{2} f(0,0)-x y^{2} \partial_{1,1}^{2} f(0,0)\right) \\
& -x y \partial_{2} f(0,0)+y^{2} \partial_{1} f(0,0)+\frac{1}{2}\left(-x^{2} y \partial_{1,2}^{2} f(0,0)+2 x y^{2} \partial_{1,1}^{2} f(0,0)+y^{3} \partial_{1,2}^{2} f(0,0)\right) \\
& +o\left(\left(x^{2}+y^{2}\right)^{3 / 2}\right) \\
& \underset{(x, y) \rightarrow(0,0)}{=}\left(x^{2}+y^{2}\right) \partial_{1} f(0,0)+\frac{1}{2}\left(x^{3} \partial_{1,1}^{2} f(0,0)+\left(x^{2} y+y^{3}\right) \partial_{1,2}^{2} f(0,0)+x y^{2} \partial_{1,1}^{2} f(0,0)\right) \\
& +o\left(\left(x^{2}+y^{2}\right)^{3 / 2}\right) \\
& \underset{(x, y) \rightarrow(0,0)}{=}\left(x^{2}+y^{2}\right) \partial_{1} f(0,0)+\frac{1}{2}\left(x^{2}+y^{2}\right)\left(x \partial_{1,1}^{2} f(0,0)+y \partial_{1,2}^{2} f(0,0)\right)+o\left(\left(x^{2}+y^{2}\right)^{3 / 2}\right) .
\end{aligned}
$$

Hence,

$$
u(x, y) \underset{(x, y) \rightarrow(0,0)}{=} \partial_{1} f(0,0)+\frac{1}{2}\left(x \partial_{1,1}^{2} f(0,0)+y \partial_{1,2}^{2} f(0,0)\right)+o\left(\left(x^{2}+y^{2}\right)^{1 / 2}\right)
$$

as required.
b) Define the mapping

$$
\begin{aligned}
\alpha: \quad \mathbb{R}^{2} & \longrightarrow \mathbb{R} \\
(x, y) & \longmapsto \frac{\partial_{1,1}^{2} f(0,0)}{2} x+\frac{\partial_{1,2}^{2} f(0,0)}{2} y .
\end{aligned}
$$

Clearly α is linear, and it follows from the previous question that

$$
\frac{u(x, y)-u(0,0)-\alpha(x, y)}{\|(x, y)\|_{2}} \underset{(x, y) \rightarrow(0,0)}{=} o(1) \underset{(x, y) \rightarrow(0,0)}{\longrightarrow} 0
$$

hence u is differentiable at $(0,0)$ and $\mathrm{d}_{(0,0)} u=\alpha$.

Exercise 3.

1. Let $x, y) \in \mathbb{R}^{2}$. Then:

$$
\partial_{1} f(x, y)=y^{3} g^{\prime}\left(x y^{2}\right), \quad \partial_{2} f(x, y)=g\left(x y^{2}\right)+2 x y^{2} g^{\prime}\left(x y^{2}\right)
$$

$\partial_{1,1}^{2} f(x, y)=y^{5} g^{\prime \prime}\left(x y^{2}\right), \quad \partial_{1,2}^{2} f(x, y)=3 y^{2} g^{\prime}\left(x y^{2}\right)+2 x y^{4} g^{\prime \prime}\left(x y^{2}\right), \quad \partial_{2,2}^{2} f(x, y)=6 x y g^{\prime}\left(x y^{2}\right)+4 x^{2} y^{3} g^{\prime \prime}\left(x y^{2}\right)$.
2. We hence have:

$$
\begin{aligned}
& f(2,1)=g(2)=3, \quad \partial_{1} f(2,1)=g^{\prime}(2)=-1, \quad \partial_{2} f(2,1)=g(2)+4 g^{\prime}(2) \\
& =3-4=-1 \text {, } \\
& \partial_{1,1}^{2} f(2,1)=g^{\prime \prime}(2)=1, \quad \partial_{1,2}^{2} f(2,1)=3 g^{\prime}(2)+4 g^{\prime \prime}(2) \quad \partial_{2,2}^{2} f(2,1)=12 g^{\prime}(2)+16 g^{\prime \prime}(2) \\
& =-3+4=1, \quad=-12+16=4 .
\end{aligned}
$$

and hence

$$
f(2+h, 1+k) \underset{(h, k) \rightarrow(0,0)}{=} 3-h-k+\frac{1}{2} h^{2}+h k+2 k^{2}+o\left(h^{2}+k^{2}\right)
$$

3. The gradient of f at $(2,1)$ gives a normal vector to \mathscr{C} at $(2,1)$. Now, $\vec{\nabla} f(2,1)=(-1,-1)$, hence an equation of Δ is:
$(\Delta) \quad-(x-2)-(y-1)=0$.
4. a) Since $f(2,1)=3$, we must have $\varphi(2)=1$. Moreover, differentiating ($* *$) yields

$$
\forall x \in \mathbb{R}, \partial_{1} f(x, \varphi(x))+\varphi^{\prime}(x) \partial_{2} f(x, \varphi(x))=0
$$

hence

$$
\partial_{1} f(2, \varphi(2))+\varphi^{\prime}(2) \partial_{2} f(2, \varphi(2))=0
$$

hence, since $\varphi(2)=1$, we must have $-1-\varphi^{\prime}(2)=0$, and hence

$$
\varphi^{\prime}(2)=-1
$$

Differentiating again we obtain

$$
\forall x \in \mathbb{R}, \partial_{1,1}^{2} f(x, \varphi(x))+2 \varphi^{\prime}(x) \partial_{1,2}^{2} f(x, \varphi(x))+\varphi^{\prime \prime}(x) \partial_{2} f(x, \varphi(x))+\varphi^{\prime}(x)^{2} \partial_{2,2}^{2} f(x, \varphi(x))=0
$$

and hence, evaluating at $x=2$ and using $\varphi(2)=1$ and $\varphi^{\prime}(2)=-1$ we obtain: $\varphi^{\prime \prime}(2)=3$.
b) Hence the Taylor-Young expansion of φ at 2 is

$$
\varphi(2+h) \underset{h \rightarrow 0}{=} 1-h+\frac{3}{2} h^{2}+o\left(h^{2}\right)
$$

and we conclude that \mathscr{C} lies above its tangent line in a neighborhood of $(2,1)$. See figure 2 .

Exercise 4.

1. a) Let $(x, y) \in(-1,1) \times \mathbb{R}$. Since $x \in(-1,1)$ we have $x^{2}<1$ and hence $x^{4} \leq x^{2}$. Hence

$$
x^{2}+y^{4} \geq x^{4}+y^{4}=\|(x, y)\|_{4}^{4}
$$

Figure 2. Sketch of the curve \mathscr{C} and Δ of Exercise 3 in a neighborhood of $(2,1)$
b) Hence, for $(x, y) \in \mathbb{R}^{2} \backslash\{(0,0)\}$,

$$
|f(x, y)-f(0,0)|=f(x, y) \leq \frac{\|(x, y)\|_{2}^{9 / 2}}{\|(x, y)\|_{4}^{4}}
$$

Now, since \mathbb{R}^{2} is a finite-dimensional vector space, the 2-norm and the 4-norm are equivalent; in particular, there exists $\alpha>0$ such that $\|\cdot\|_{2} \leq \alpha\|\cdot\|_{4}$, hence

$$
|f(x, y)-f(0,0)| \leq \frac{\|(x, y)\|_{2}^{9 / 2}}{\|(x, y)\|_{4}^{4}} \leq \frac{\alpha^{9 / 2}\|(x, y)\|_{4}^{9 / 2}}{\|(x, y)\|_{4}^{4}}=\alpha^{9 / 2}\|(x, y)\|_{4}^{1 / 2} \underset{(x, y) \rightarrow(0,0)}{\longrightarrow} 0
$$

and we conclude that f is continuous at $(0,0)$.
2. Let $h \in \mathbb{R}^{*}$. Then

$$
\frac{f(h, 0)-f(0,0)}{h}=\frac{|h|^{9 / 2}}{h^{3}}=\frac{|h|^{5 / 2}}{h}=|h|^{3 / 2} \frac{|h|}{h} \underset{h \rightarrow 0}{\longrightarrow} 0,
$$

since $|h| / h$ remains bounded and $|h|^{3 / 2} \underset{h \rightarrow 0}{\longrightarrow} 0$. Hence $\partial_{1} f(0,0)$ exists and $\partial_{1} f(0,0)=0$.
Let $h \in \mathbb{R}^{*}$. Then

$$
\frac{f(0, h)-f(0,0)}{h}=\frac{|h|^{9 / 2}}{h^{5}}=\frac{|h|^{1 / 2}}{h}
$$

the limit of which doesn't exist as $h \rightarrow 0$ (it's easy to see that the right-sided limit yields $+\infty$). Hence $\partial_{2} f(0,0)$ doesn't exist.
Since $\partial_{2} f(0,0)$ doesn't exist, f is not differentiable at $(0,0)$.
3. Let $(\alpha, \beta) \in \mathbb{R}^{2} \backslash\{(0,0)\}$ and let $t \in \mathbb{R}^{*}$. Then

$$
\begin{aligned}
\frac{f(t \alpha, t \beta)-f(0,0)}{t} & =\frac{\left(t^{2} \alpha^{2}+t^{2} \beta^{2}\right)^{9 / 4}}{t\left(t^{2} \alpha^{2}+t^{4} \beta^{4}\right)}=\frac{|t|^{9 / 2}\left(\alpha^{2}+\beta^{2}\right)^{9 / 4}}{t^{3}\left(\alpha^{2}+t^{2} \beta^{4}\right)}=\frac{|t|^{5 / 2}\left(\alpha^{2}+\beta^{2}\right)^{9 / 4}}{t\left(\alpha^{2}+t^{2} \beta^{4}\right)} \\
& = \begin{cases}\frac{|t|^{5 / 2}\left(\alpha^{2}+\beta^{2}\right)^{9 / 4}}{t\left(\alpha^{2}+t^{2} \beta^{4}\right)} & \text { if } \alpha \neq 0 \\
\frac{|t|^{1 / 2}|\beta|^{9 / 2}}{t \beta^{4}} & \text { if } \alpha=0\end{cases} \\
& \xrightarrow[t \rightarrow 0]{\longrightarrow} \begin{cases}0 & \text { if } \alpha \neq 0 \\
\text { DNE } & \text { if } \alpha=0 .\end{cases}
\end{aligned}
$$

Hence the directional derivatives of f at $(0,0)$ exist in all direction except in a direction of the form $(0, \beta)$ for $\beta \in \mathbb{R}^{*}$.

[^0]: ${ }^{1}$ We could also have computed the Jacobian matrix of φ and used the GIFT, but this is asked in the next question.

