No documents, no calculators, no cell phones or electronic devices allowed. Cute and fluffy pets allowed (for moral support only).

All your answers must be fully (but concisely) justified, unless noted otherwise.

Exercise 1. Let

$$D = \{(u, v) \in \mathbb{R}^2 \mid u - v > 0\}$$
 and $\Omega = \mathbb{R}_+^* \times \mathbb{R}$

You're given that D and Ω are open subsets of \mathbb{R}^2 (but this should be obvious to you). We define the mapping

$$\varphi: D \longrightarrow \Omega$$
$$(u,v) \longmapsto (e^{u+v}, \ln(u-v)).$$

- 1. a) Check (very briefly) that φ is well-defined.
 - b) Show that φ is a C^1 -diffeomorphism, and determine φ^{-1} explicitly.
 - c) i) For $(u, v) \in D$, express the Jacobian matrix $J_{(u, v)} \varphi$ of φ at (u, v).
 - ii) For $(x, y) \in D$, express the Jacobian matrix $J_{(x, y)}(\varphi^{-1})$ of φ^{-1} at (x, y).
 - iii) What relation exists between $J\varphi$ and $J(\varphi^{-1})$ (where the Jacobian matrices are taken at appropriate points)? Check explicitly that this is indeed the case.
- 2. Use φ to find all functions $f:\Omega\to\mathbb{R}$ of class C^1 such that

$$\forall (x,y) \in \Omega, \ xe^{y} \partial_{1} f(x,y) - \partial_{2} f(x,y) - 3e^{y} f(x,y) = 0.$$

Exercise 2. Let U be a simply-connected set of \mathbb{R}^2 such that $(0,0) \in U$. Let $f: U \to \mathbb{R}$ be function of class C^2 , and assume moreover that f satisfies the following equation:²

(H)
$$\partial_{1,1}^2 f + \partial_{2,2}^2 f = 0.$$

We define the differential form ω on U by

$$\forall (x,y) \in U, \ \omega_{(x,y)} = -\partial_2 f(x,y)e'_1 + \partial_1 f(x,y)e'_2$$

where (e'_1, e'_2) is the dual basis of \mathbb{R}^2 .

- 1. Show that there exists a function $g: U \to \mathbb{R}$ of class C^2 such that $dg = \omega$ and g(0,0) = 0.
- 2. Show that g is harmonic, i.e., that $\partial_{1,1}^2 g + \partial_{2,2}^2 g = 0$. Determine the second order partial derivative $\partial_{1,2}^2 g$ of g in terms of the partial derivatives of f only.
- 3. We define the function u as

$$\begin{array}{ccc} u: & U & \longrightarrow & \mathbb{R} \\ (x,y) & \longmapsto \begin{cases} \frac{xf(x,y)+yg(x,y)}{x^2+y^2} & \text{if } (x,y) \neq (0,0) \\ \partial_1 f(0,0) & \text{if } (x,y) = (0,0). \end{cases} \end{array}$$

a) We now assume that f(0,0) = 0. Use the second order Taylor-Young expansion of f and g at (0,0) to show that³

$$u(x,y) = \underset{(x,y)\to(0,0)}{=} \partial_1 f(0,0) + \frac{1}{2} x \partial_{1,1}^2 f(0,0) + \frac{1}{2} y \partial_{1,2}^2 f(0,0) + o\left(\sqrt{x^2 + y^2}\right).$$

b) Deduce that u is differentiable at (0,0) and explicit the differential $d_{(0,0)}u$ of u at (0,0).

$$xo(x^2+y^2) = (x,y) = o((x^2+y^2)^{3/2})$$
 and $yo(x^2+y^2) = o((x^2+y^2)^{3/2})$.

² such a function f is called a harmonic function.

³You may use, without any justifications, that

Exercise 3. Let $g: \mathbb{R} \to \mathbb{R}$ be a function of class C^2 such that

$$g(2) = 3,$$
 $g'(2) = -1,$ $g''(2) = 1,$

and define the function f as⁴

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
$$(x,y) \longmapsto yg(xy^2).$$

1. Determine the following first and second order partial derivatives of \boldsymbol{f}

$$\partial_1 f$$
, $\partial_2 f$, $\partial_{1,1}^2 f$, $\partial_{1,2}^2 f$, $\partial_{2,2}^2 f$

in terms of g and its derivatives at well-chosen points.

- 2. Deduce the second order Taylor–Young expansion of f at (2, 1).
- 3. We denote by \mathscr{C} the level set of f at level 3, i.e.,

$$\mathscr{C} = \{(x,y) \in \mathbb{R}^2 \mid f(x,y) = 3\}.$$

We assume that $\mathscr C$ is a curve. Give an equation of the tangent line Δ to $\mathscr C$ at (2,1).

4. We assume, moreover, that there exists $\varphi: \mathbb{R} \to \mathbb{R}$ of class C^2 such that \mathscr{C} possesses a representation of the form

$$(\mathscr{C}) \qquad y = \varphi(x),$$

that is,

(*)
$$\forall (x,y) \in \mathbb{R}^2, \ f(x,y) = 3 \iff y = \varphi(x).$$

Note that, in particular, we must have

$$\forall x \in \mathbb{R}, \ f(x, \varphi(x)) = 3.$$

- a) Determine the value of $\varphi(2)$, $\varphi'(2)$ and $\varphi''(2)$. Hint: to determine the value of $\varphi'(2)$ and $\varphi''(2)$ you might want to differentiate (**).
- b) Deduce the relative position of $\mathscr C$ with respect to Δ in a neighborhood of (2, 1), and sketch the curve $\mathscr C$ in a neighborhood of (2, 1).

Exercise 4. Let

$$f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$$

$$(x,y) \longmapsto \begin{cases} \frac{(x^{2}+y^{2})^{9/4}}{x^{2}+y^{4}} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

- 1. In this question we show that f is continuous at (0,0).
 - a) Briefly check that⁵

$$\forall (x, y) \in (-1, 1) \times \mathbb{R}, \ x^2 + y^4 \ge \left\| (x, y) \right\|_4^4$$

- b) Deduce that f is continuous at (0,0).
- 2. Study the existence of the partial derivatives $\partial_1 f(0,0)$ and $\partial_2 f(0,0)$, and determine their value if they exist. Is f differentiable at (0,0)?
- 3. Let $(\alpha, \beta) \in \mathbb{R}^2 \setminus \{(0, 0)\}$. Determine whether the directional derivative $\nabla_{(\alpha, \beta)} f(0, 0)$ of f at (0, 0) in the direction (α, β) exists, and determine its value if it exists.

$$\forall (x, y) \in \mathbb{R}^2, \ \|(x, y)\|_{0} = (|x|^p + |y|^p)^{1/p}$$

⁴The function f thus defined is obviously of class C^2 , so you don't have to justify this fact.

⁵We recall that for $p \in [1, +\infty)$, the p-norm $\|\cdot\|_p$ defined on \mathbb{R}^2 by