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Exercise 1.

1. We use the Implicit Function Theorem:

• The point (1, 0) belongs to C since f(1, 0) = 1.

• The function f is of class C∞.

• ∂2f(0, 0) = −3 6= 0.

Hence, by the Implicit Function Theorem, there exists a neighborhood U of 1 in R and a neighborhood V of
0 in R, and a function ϕ : U → V of class C∞ such that

∀(x, y) ∈ U × V,
(

f(x, y) = 0 ⇐⇒ y = ϕ(x)
)

.

Hence, the intersection of C with U × V is the graph of ϕ.

2. a) i) a = 0.

ii) We know that ϕ(1) = 0 and that

∀x ∈ U, ϕ′(x) = −
∂1f
(

x, ϕ(x)
)

∂2f
(

x, ϕ(x)
) .

Now, for x, y ∈ R,

∂1f(x, y) = 3x2 − 3y, ∂2f(x, y) = 3y2 − 3x.

Hence,

∀x ∈ U, ϕ′(x) = −
x2 − ϕ(x)

ϕ(x)2 − x
.

Hence,
ϕ′(1) = 1.

We now differentiate ϕ′: for x ∈ U ,

ϕ′′(x) = −

(

2x− ϕ′(x)
)(

ϕ(x)2 − x
)

−
(

x2 − ϕ(x)
)(

2ϕ′(x)ϕ(x)− 1
)

(

ϕ(x)2 − x
)2 .

Evaluating at 1, using ϕ(1) = 0 and ϕ′(1) = 1 yields

ϕ′′(1) = 0.

Hence b = ϕ′(1) = 1 and c = ϕ′′(1)/2 = 0.

b)

1 = f
(

1 + h, ϕ(1 + h)
)

=
h→0

(1 + h)3 +
(

h+ dh3 + o
(

h3
)

)3

− 3(1 + h)
(

h+ dh3 + o
(

h3
)

)

=
h→0

1 + 3h+ 3h2 + h3 + h3 − 3h− 3dh3 − 3h2 + o
(

h3
)

=
h→0

1 + (2− 3d)h3 + o
(

h3
)

Hence d = 2/3.

c) Hence the Taylor–Young expansion of ϕ at 1 is

ϕ(x) =
x→1

(x− 1) +
2

3
(x− 1)3 + o

(

(x− 1)3
)

,

and we conclude that an equation of the tangent line to ϕ at A(1, 0) is is

∆: y = x− 1

and the graph of ϕ (and hence C ) lies:

• Above ∆ for x > 1 (and x close enough to 1),
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Figure 3. Curve C is a neighborhood of A(1, 0), Exercise 1. The curve C crosses its tangent line at A(1, 0),
hence A is a point of inflection of C .

• Below ∆ for x < 1 (and x close enough to 1),

hence A(1, 0) is indeed a point of inflection of C .

d) See Figure 3.

Exercise 2.

1. We use the Implicit Function Theorem:

• The point M0 belongs to S since f(1, 0, 0) = 1.

• The function f is of class C∞.

• ∂2f(1, 0, 0) = 1 6= 0.

Hence, by the Implicit Function Theorem, there exists a neighborhood U of (1, 0) in R
2 and a neighborhood

V of 0 in R and a function ϕ : U → V such that

∀(x, z) ∈ U, ∀y ∈ V,
(

f(x, y, z) = 1 ⇐⇒ y = ϕ(x, z)
)

.

2. Moreover, we know that ϕ(1, 0) = 0 and for all (x, z) ∈ U ,

∂1ϕ(x, z) = −
∂1f
(

x, ϕ(x, z), z
)

∂2f
(

x, ϕ(x, z), z
)

∂2ϕ(x, z) = −
∂3f
(

x, ϕ(x, z), z
)

∂2f
(

x, ϕ(x, z), z
) .



Now, for (x, y, z) ∈ R
3,

∂1f(x, y, z) =
(

1 + (x+ y + z)yz
)

exyz,

∂2f(x, y, z) =
(

1 + (x+ y + z)xz
)

exyz,

∂3f(x, y, z) =
(

1 + (x+ y + z)xy
)

exyz,

hence, for all (x, z) ∈ U ,

∂1ϕ(x, z) = −
1 +

(

x+ ϕ(x, z) + z
)

ϕ(x, z)z

1 +
(

x+ ϕ(x, z) + z
)

xz
,

∂2ϕ(x, z) = −
1 +

(

x+ ϕ(x, z) + z
)

xϕ(x, z)

1 +
(

x+ ϕ(x, z) + z
)

xz
.

Hence

∂1ϕ(1, 0) = −1, ∂2ϕ(1, 0) = −1.

We now compute the second order partial derivatives of ϕ at (1, 0), using the rate of change:

• ∂2
1,1ϕ(1, 0): for h 6= 0 such that (1 + h, 0) ∈ U :

∂1ϕ(1 + h, 0)− ∂1ϕ(1, 0)

h
= 0 −→

h→0
0.

Hence ∂2
1,1ϕ(1, 0) = 0.

• ∂2
1,2ϕ(1, 0): for h 6= 0 such that (1 + h, 0) ∈ U :

∂2ϕ(1 + h, 0)− ∂2ϕ(1, 0)

h
= −

(

1 + h+ ϕ(1 + h, 0)
)

(1 + h)ϕ(1 + h, 0)

h

= −
(

1 + h+ ϕ(1 + h, 0)
)

(1 + h)
ϕ(1 + h, 0)

h
−→
h→0

−∂1ϕ(1, 0) = 1.

Hence ∂2
1,2ϕ(1, 0) = −1.

• ∂2
2,2ϕ(1, 0): for h 6= 0 such that (1, h) ∈ U :

∂2ϕ(1, h)− ∂2ϕ(1, 0)

h
=

1

h

(

−
1 +

(

1 + ϕ(1, h) + h
)

ϕ(1, h)

1 +
(

1 + ϕ(1, h) + h
)

h
+ 1

)

=
1

h

(

−

(

1 + ϕ(1, h) + h
)(

ϕ(1, h)− h
)

1 +
(

1 + ϕ(1, h) + h
)

h

)

= −

(

1 + ϕ(1, h) + h
)

1 +
(

1 + ϕ(1, h) + h
)

h

(

ϕ(1, h)− h
)

h

−→
h→0

−
(

∂2ϕ(1, 0)− 1
)

= 2.

Hence ∂2
2,2ϕ(1, 0) = 2.

We hence conclude that the second order Taylor–Young expansion of ϕ at (1, 0) is:

ϕ(1 + h, k) =
(h,k)→(0,0)

−h− k + hk + k2 + o
(

h2 + k2
)

.

Exercise 3.

1. • For (u, v) ∈ Ω, u/v is well-defined and positive, hence ln(u/v) is well-defined. Moreover, v > 0, hence
(

v, ln(u/v)
)

∈ R
∗
+ × R = D. Hence ϕ is well-defined.

• ϕ is clearly of class C2 (in fact even of class C∞).



• We now show that ϕ is a bijection: let (u, v) ∈ Ω and (x, y) ∈ D. Then

ϕ(u, v) = (x, y) ⇐⇒

{

v = x

ln(u/v) = y
⇐⇒

{

v = x

u/v = ey
⇐⇒

{

v = x

u = xey.

Now for (x, y) ∈ D = R
∗
+ × R,

(

xey, x
)

∈ R
∗
+ × R

∗
+ = Ω, hence ϕ is a bijection, and

ϕ−1 : D −→ Ω
(x, y) 7−→

(

xey, x
)

.

• Clearly, ϕ−1 is of class C2 (and even of class C∞).

Hence ϕ is a C2-diffeomorphism from Ω to D. Hence we can use ϕ to solve (∗).

2. Let f : D → R be a function, and let g = f ◦ ϕ. Since ϕ is a C2-diffeomorphism,

f is of class C2 ⇐⇒ g is of class C2.

More explicitly, the relation between f and g is:

∀(x, y) ∈ D, f(x, y) = g
(

xey, x
)

.

We now assume that f is of class C2 (so that g is also of class C2; we’ll use Schwarz’ Theorem without
explicitly mentioning it). Let (x, y) ∈ D and set (u, v) = ϕ−1(x, y) =

(

xey, x
)

. We express the partial
derivatives of f in terms of that of g:

∂1f(x, y) = ey∂1g
(

xey, x
)

+ ∂2g
(

xey, x
)

,

∂2f(x, y) = xey∂1g
(

xey, x
)

,

∂2
1,1f(x, y) = e2y∂2

1,1g
(

u, v) + ey∂2
2,1g(u, v) + ey∂2

1,2g(u, v) + ∂2
2,2g(u, v)

= e2y∂2
1,1g

(

u, v) + 2ey∂2
1,2g(u, v) + ∂2

2,2g(u, v),

∂2
1,2f(x, y) = ey∂1g(u, v) + xe2y∂2

1,1g(u, v) + xey∂2
2,1g(u, v),

∂2
2,2f(x, y) = xey∂1g(u, v) + x2e2y∂2

1,1g(u, v).

Hence,

x2∂2
1,1f(x, y)− 2x∂2

1,2f(x, y) + ∂2
2,2f(x, y) + ∂2f(x, y) + x2f(x, y)

= x2e2y∂2
1,1g

(

u, v) + 2x2ey∂2
1,2g(u, v) + x2∂2

2,2g(u, v)

− 2xey∂1g(u, v)− 2x2e2y∂2
1,1g(u, v)− 2x2ey∂2

2,1g(u, v)

+ xey∂1g(u, v) + x2e2y∂2
1,1g(u, v)

+ xey∂1g(u, v)

+ x2g(u, v)

= v2∂2
2,2g(u, v) + v2g(u, v).

Hence,

f is a solution of (∗) on D ⇐⇒ ∀(u, v) ∈ Ω, v2∂2
2,2g(u, v) + v2g(u, v) = v2

⇐⇒ ∀(u, v) ∈ Ω, ∂2
2,2g(u, v) + g(u, v) = 1.

Let u0 ∈ R
∗
+ and define the function h as

h : R
∗
+ −→ R

v 7−→ g(u0, v).

Clearly,
∂2
2,2g(u0, v) + g(u0, v) = h′′(v) + h(v).

Now we know that the general solution of the differential equation h′′ + h = 1 is

h(v) = A cos(v) +B sin(v) + 1,



for A,B ∈ R.

Hence,

f is a solution of (∗) on D ⇐⇒ ∃A : R∗
+ → R, ∃B : R∗

+ → R,

∀(u, v) ∈ Ω, g(u, v) = A(u) cos(v) +B(u) sin(v) + 1

⇐⇒ ∃A : R∗
+ → R, ∃B : R∗

+ → R,

∀(x, y) ∈ D, f(x, y) = A
(

xey
)

cos(x) +B
(

xey
)

sin(x) + 1

Hence, the general solution of class C2 of (∗) on D is of the form

f(x, y) = A
(

xey
)

cos(x) +B
(

xey
)

sin(x) + 1

for A : R∗
+ → R and B : R∗

+ → R of class C2.

Exercise 4.

1. (1) Series (1) is a geometric series of ratio e−1 ∈ (−1, 1), hence is convergent.

(2) Let n ∈ N. We have n2 ≥ n, hence 0 ≤ e−n2

≤ e−n. Hence, by the comparison test (and since Series (1)
is convergent), Series (2) is convergent.

(3) We have lim
n→+∞

e−1/n2

= 1 6= 0, hence Series (3) is divergent.

2. Since α > 0,
1

n2α
−→

n→+∞
0 and we hence have the following equivalent:

exp

(

1

n2α

)

− 1 ∼
n→+∞

1

n2α
> 0.

Now, the sequence

(

1

n2α

)

n≥1

is the general term of a convergent series if and only if 2α > 1 if and only if

α > 1/2 (Riemann). Hence, by the equivalent test, the series is convergent if and only if α > 1/2.

3. For n ∈ N set
un =

n

2n + 1
.

Clearly the sequence (un)n∈N is a sequence with positive terms. Now, for n ∈ N,

un+1

un
=

n+ 1

2n+1 + 1

2n + 1

n
∼

n→+∞

n

2n+1

2n

n
=

1

2
−→

n→+∞

1

2
< 1.

Hence, by the ratio test, the series converges.

4. a) For n ∈ N define

un =
(−1)n

2n+ 1
.

• Clearly, the sequence (un)n∈N is an alternating sequence.

• For n ∈ N, |un+1| =
1

2n+ 3
≤

1

2n+ 1
= |un|.

• lim
n→+∞

un = 0.

Hence, by the alternating series test, the series
∑

n un is convergent.

b) Let N ∈ N
∗. By the alternating series test, we moreover know that

|S − SN | =

∣

∣

∣

∣

∣

+∞
∑

n=N+1

un

∣

∣

∣

∣

∣

≤ |uN+1|.

Hence it’s sufficient to choose N such that |uN+1| ≤ 10−3. Now,

|uN+1| ≤ 10−3 ⇐⇒
1

2N + 3
≤ 10−3 ⇐⇒ 2N + 3 ≥ 1000 ⇐⇒ 2N ≥ 997,

so we can choose N = 499.



5. We denote by (un)n∈N∗ the general term of the series. Since α > 0, we have lim
n→+∞

(−1)n

nα
= 0, hence

un = exp

(

(−1)n

nα

)

− 1 =
n→+∞

(−1)n

nα
+

1

2n2α
+ o

(

1

n2α

)

.

For n ∈ N
∗, define

an =
(−1)n

nα
, bn = un − an.

Clearly, the sequence (an)n∈N∗ is the general term of a convergent alternating Riemann series (since α > 0).
Now,

bn ∼
n→+∞

1

2n2α
> 0,

and (bn)n∈N∗ is the general term of a convergent series if and only if 2α > 1, if and only if α > 1/2. Hence,
by the equivalent test, the series

∑

n bn converges if and only if α > 1/2. We hence conclude that the series
∑

n un converges if and only if α > 1/2.


