Exercise 1.

1. We use the Implicit Function Theorem:

- The point $(1,0)$ belongs to \mathscr{C} since $f(1,0)=1$.
- The function f is of class C^{∞}.
- $\partial_{2} f(0,0)=-3 \neq 0$.

Hence, by the Implicit Function Theorem, there exists a neighborhood U of 1 in \mathbb{R} and a neighborhood V of 0 in \mathbb{R}, and a function $\varphi: U \rightarrow V$ of class C^{∞} such that

$$
\forall(x, y) \in U \times V,(f(x, y)=0 \Longleftrightarrow y=\varphi(x))
$$

Hence, the intersection of \mathscr{C} with $U \times V$ is the graph of φ.
2. a) i) $a=0$.
ii) We know that $\varphi(1)=0$ and that

$$
\forall x \in U, \varphi^{\prime}(x)=-\frac{\partial_{1} f(x, \varphi(x))}{\partial_{2} f(x, \varphi(x))}
$$

Now, for $x, y \in \mathbb{R}$,

$$
\partial_{1} f(x, y)=3 x^{2}-3 y, \quad \partial_{2} f(x, y)=3 y^{2}-3 x
$$

Hence,

$$
\forall x \in U, \varphi^{\prime}(x)=-\frac{x^{2}-\varphi(x)}{\varphi(x)^{2}-x}
$$

Hence,

$$
\varphi^{\prime}(1)=1 .
$$

We now differentiate φ^{\prime} : for $x \in U$,

$$
\varphi^{\prime \prime}(x)=-\frac{\left(2 x-\varphi^{\prime}(x)\right)\left(\varphi(x)^{2}-x\right)-\left(x^{2}-\varphi(x)\right)\left(2 \varphi^{\prime}(x) \varphi(x)-1\right)}{\left(\varphi(x)^{2}-x\right)^{2}}
$$

Evaluating at 1 , using $\varphi(1)=0$ and $\varphi^{\prime}(1)=1$ yields

$$
\varphi^{\prime \prime}(1)=0 .
$$

Hence $b=\varphi^{\prime}(1)=1$ and $c=\varphi^{\prime \prime}(1) / 2=0$.
b)

$$
\begin{aligned}
1=f(1+h, \varphi(1+h)) & \underset{h \rightarrow 0}{=}(1+h)^{3}+\left(h+d h^{3}+o\left(h^{3}\right)\right)^{3}-3(1+h)\left(h+d h^{3}+o\left(h^{3}\right)\right) \\
& \underset{h \rightarrow 0}{=} 1+3 h+3 h^{2}+h^{3}+h^{3}-3 h-3 d h^{3}-3 h^{2}+o\left(h^{3}\right) \\
& =1+(2-3 d) h^{3}+o\left(h^{3}\right)
\end{aligned}
$$

Hence $d=2 / 3$.
c) Hence the Taylor-Young expansion of φ at 1 is

$$
\varphi(x) \underset{x \rightarrow 1}{=}(x-1)+\frac{2}{3}(x-1)^{3}+o\left((x-1)^{3}\right),
$$

and we conclude that an equation of the tangent line to φ at $A(1,0)$ is is

$$
\Delta: y=x-1
$$

and the graph of φ (and hence \mathscr{C}) lies:

- Above Δ for $x>1$ (and x close enough to 1),

Figure 3. Curve \mathscr{C} is a neighborhood of $A(1,0)$, Exercise 1. The curve \mathscr{C} crosses its tangent line at $A(1,0)$, hence A is a point of inflection of \mathscr{C}.

- Below Δ for $x<1$ (and x close enough to 1),
hence $A(1,0)$ is indeed a point of inflection of \mathscr{C}.
d) See Figure 3.

Exercise 2.

1. We use the Implicit Function Theorem:

- The point M_{0} belongs to \mathscr{S} since $f(1,0,0)=1$.
- The function f is of class C^{∞}.
- $\partial_{2} f(1,0,0)=1 \neq 0$.

Hence, by the Implicit Function Theorem, there exists a neighborhood U of $(1,0)$ in \mathbb{R}^{2} and a neighborhood V of 0 in \mathbb{R} and a function $\varphi: U \rightarrow V$ such that

$$
\forall(x, z) \in U, \forall y \in V,(f(x, y, z)=1 \Longleftrightarrow y=\varphi(x, z))
$$

2. Moreover, we know that $\varphi(1,0)=0$ and for all $(x, z) \in U$,

$$
\begin{aligned}
& \partial_{1} \varphi(x, z)=-\frac{\partial_{1} f(x, \varphi(x, z), z)}{\partial_{2} f(x, \varphi(x, z), z)} \\
& \partial_{2} \varphi(x, z)=-\frac{\partial_{3} f(x, \varphi(x, z), z)}{\partial_{2} f(x, \varphi(x, z), z)}
\end{aligned}
$$

Now, for $(x, y, z) \in \mathbb{R}^{3}$,

$$
\begin{aligned}
& \partial_{1} f(x, y, z)=(1+(x+y+z) y z) \mathrm{e}^{x y z}, \\
& \partial_{2} f(x, y, z)=(1+(x+y+z) x z) \mathrm{e}^{x y z}, \\
& \partial_{3} f(x, y, z)=(1+(x+y+z) x y) \mathrm{e}^{x y z},
\end{aligned}
$$

hence, for all $(x, z) \in U$,

$$
\begin{aligned}
& \partial_{1} \varphi(x, z)=-\frac{1+(x+\varphi(x, z)+z) \varphi(x, z) z}{1+(x+\varphi(x, z)+z) x z} \\
& \partial_{2} \varphi(x, z)=-\frac{1+(x+\varphi(x, z)+z) x \varphi(x, z)}{1+(x+\varphi(x, z)+z) x z} .
\end{aligned}
$$

Hence

$$
\partial_{1} \varphi(1,0)=-1, \quad \partial_{2} \varphi(1,0)=-1
$$

We now compute the second order partial derivatives of φ at $(1,0)$, using the rate of change:

- $\partial_{1,1}^{2} \varphi(1,0)$: for $h \neq 0$ such that $(1+h, 0) \in U$:

$$
\frac{\partial_{1} \varphi(1+h, 0)-\partial_{1} \varphi(1,0)}{h}=0 \underset{h \rightarrow 0}{\longrightarrow} 0 .
$$

Hence $\partial_{1,1}^{2} \varphi(1,0)=0$.

- $\partial_{1,2}^{2} \varphi(1,0)$: for $h \neq 0$ such that $(1+h, 0) \in U$:

$$
\begin{aligned}
\frac{\partial_{2} \varphi(1+h, 0)-\partial_{2} \varphi(1,0)}{h} & =-\frac{(1+h+\varphi(1+h, 0))(1+h) \varphi(1+h, 0)}{h} \\
& =-(1+h+\varphi(1+h, 0))(1+h) \frac{\varphi(1+h, 0)}{h} \\
& \xrightarrow[h \rightarrow 0]{\longrightarrow}-\partial_{1} \varphi(1,0)=1 .
\end{aligned}
$$

Hence $\partial_{1,2}^{2} \varphi(1,0)=-1$.

- $\partial_{2,2}^{2} \varphi(1,0)$: for $h \neq 0$ such that $(1, h) \in U$:

$$
\begin{aligned}
\frac{\partial_{2} \varphi(1, h)-\partial_{2} \varphi(1,0)}{h} & =\frac{1}{h}\left(-\frac{1+(1+\varphi(1, h)+h) \varphi(1, h)}{1+(1+\varphi(1, h)+h) h}+1\right) \\
& =\frac{1}{h}\left(-\frac{(1+\varphi(1, h)+h)(\varphi(1, h)-h)}{1+(1+\varphi(1, h)+h) h}\right) \\
& =-\frac{(1+\varphi(1, h)+h)}{1+(1+\varphi(1, h)+h) h} \frac{(\varphi(1, h)-h)}{h} \\
& \xrightarrow[h \rightarrow 0]{\longrightarrow}-\left(\partial_{2} \varphi(1,0)-1\right)=2 .
\end{aligned}
$$

Hence $\partial_{2,2}^{2} \varphi(1,0)=2$.
We hence conclude that the second order Taylor-Young expansion of φ at $(1,0)$ is:

$$
\varphi(1+h, k) \underset{(h, k) \rightarrow(0,0)}{=}-h-k+h k+k^{2}+o\left(h^{2}+k^{2}\right) .
$$

Exercise 3.

1. \quad For $(u, v) \in \Omega, u / v$ is well-defined and positive, hence $\ln (u / v)$ is well-defined. Moreover, $v>0$, hence $(v, \ln (u / v)) \in \mathbb{R}_{+}^{*} \times \mathbb{R}=D$. Hence φ is well-defined.

- φ is clearly of class C^{2} (in fact even of class C^{∞}).
- We now show that φ is a bijection: let $(u, v) \in \Omega$ and $(x, y) \in D$. Then

$$
\varphi(u, v)=(x, y) \Longleftrightarrow\left\{\begin{array} { l }
{ v = x } \\
{ \operatorname { l n } (u / v) = y }
\end{array} \Longleftrightarrow \left\{\begin{array} { l }
{ v = x } \\
{ u / v = \mathrm { e } ^ { y } }
\end{array} \quad \Longleftrightarrow \left\{\begin{array}{l}
v=x \\
u=x \mathrm{e}^{y}
\end{array}\right.\right.\right.
$$

Now for $(x, y) \in D=\mathbb{R}_{+}^{*} \times \mathbb{R},\left(x \mathrm{e}^{y}, x\right) \in \mathbb{R}_{+}^{*} \times \mathbb{R}_{+}^{*}=\Omega$, hence φ is a bijection, and

$$
\begin{array}{cc}
\varphi^{-1}: \begin{array}{c}
D
\end{array}>{ }^{\longrightarrow} \\
(x, y) & \longmapsto\left(x \mathrm{e}^{y}, x\right) .
\end{array}
$$

- Clearly, φ^{-1} is of class C^{2} (and even of class C^{∞}).

Hence φ is a C^{2}-diffeomorphism from Ω to D. Hence we can use φ to solve (*).
2. Let $f: D \rightarrow \mathbb{R}$ be a function, and let $g=f \circ \varphi$. Since φ is a C^{2}-diffeomorphism,

$$
f \text { is of class } C^{2} \Longleftrightarrow g \text { is of class } C^{2}
$$

More explicitly, the relation between f and g is:

$$
\forall(x, y) \in D, f(x, y)=g\left(x \mathrm{e}^{y}, x\right)
$$

We now assume that f is of class C^{2} (so that g is also of class C^{2}; we'll use Schwarz' Theorem without explicitly mentioning it). Let $(x, y) \in D$ and set $(u, v)=\varphi^{-1}(x, y)=\left(x \mathrm{e}^{y}, x\right)$. We express the partial derivatives of f in terms of that of g :

$$
\begin{aligned}
\partial_{1} f(x, y) & =\mathrm{e}^{y} \partial_{1} g\left(x \mathrm{e}^{y}, x\right)+\partial_{2} g\left(x \mathrm{e}^{y}, x\right), \\
\partial_{2} f(x, y) & =x \mathrm{e}^{y} \partial_{1} g\left(x \mathrm{e}^{y}, x\right), \\
\partial_{1,1}^{2} f(x, y) & =\mathrm{e}^{2 y} \partial_{1,1}^{2} g(u, v)+\mathrm{e}^{y} \partial_{2,1}^{2} g(u, v)+\mathrm{e}^{y} \partial_{1,2}^{2} g(u, v)+\partial_{2,2}^{2} g(u, v) \\
& =\mathrm{e}^{2 y} \partial_{1,1}^{2} g(u, v)+2 \mathrm{e}^{y} \partial_{1,2}^{2} g(u, v)+\partial_{2,2}^{2} g(u, v), \\
\partial_{1,2}^{2} f(x, y) & =\mathrm{e}^{y} \partial_{1} g(u, v)+x \mathrm{e}^{2 y} \partial_{1,1}^{2} g(u, v)+x \mathrm{e}^{y} \partial_{2,1}^{2} g(u, v), \\
\partial_{2,2}^{2} f(x, y) & =x \mathrm{e}^{y} \partial_{1} g(u, v)+x^{2} \mathrm{e}^{2 y} \partial_{1,1}^{2} g(u, v) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
x^{2} \partial_{1,1}^{2} f(x, y)-2 x \partial_{1,2}^{2} f(x, y)+ & \partial_{2,2}^{2} f(x, y)+\partial_{2} f(x, y)+x^{2} f(x, y) \\
= & x^{2} \mathrm{e}^{2 y} \partial_{1,1}^{2} g(u, v)+2 x^{2} \mathrm{e}^{y} \partial_{1,2}^{2} g(u, v)+x^{2} \partial_{2,2}^{2} g(u, v) \\
& \quad-2 x \mathrm{e}^{y} \partial_{1} g(u, v)-2 x^{2} \mathrm{e}^{2 y} \partial_{1,1}^{2} g(u, v)-2 x^{2} \mathrm{e}^{y} \partial_{2,1}^{2} g(u, v) \\
& +x \mathrm{e}^{y} \partial_{1} g(u, v)+x^{2} \mathrm{e}^{2 y} \partial_{1,1}^{2} g(u, v) \\
& +x \mathrm{e}^{y} \partial_{1} g(u, v) \\
& \quad+x^{2} g(u, v) \\
= & v^{2} \partial_{2,2}^{2} g(u, v)+v^{2} g(u, v) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
f \text { is a solution of }(*) \text { on } D & \Longleftrightarrow \forall(u, v) \in \Omega, v^{2} \partial_{2,2}^{2} g(u, v)+v^{2} g(u, v)=v^{2} \\
& \Longleftrightarrow \forall(u, v) \in \Omega, \partial_{2,2}^{2} g(u, v)+g(u, v)=1 .
\end{aligned}
$$

Let $u_{0} \in \mathbb{R}_{+}^{*}$ and define the function h as

$$
\begin{aligned}
h: \mathbb{R}_{+}^{*} & \longrightarrow \mathbb{R} \\
v & \longmapsto g\left(u_{0}, v\right) .
\end{aligned}
$$

Clearly,

$$
\partial_{2,2}^{2} g\left(u_{0}, v\right)+g\left(u_{0}, v\right)=h^{\prime \prime}(v)+h(v)
$$

Now we know that the general solution of the differential equation $h^{\prime \prime}+h=1$ is

$$
h(v)=A \cos (v)+B \sin (v)+1
$$

for $A, B \in \mathbb{R}$.
Hence,

$$
\begin{aligned}
& f \text { is a solution of }(*) \text { on } D \Longleftrightarrow \exists A: \mathbb{R}_{+}^{*} \rightarrow \mathbb{R}, \exists B: \mathbb{R}_{+}^{*} \rightarrow \mathbb{R}, \\
& \forall(u, v) \in \Omega, g(u, v)=A(u) \cos (v)+B(u) \sin (v)+1 \\
& \Longleftrightarrow \exists A: \mathbb{R}_{+}^{*} \rightarrow \mathbb{R}, \exists B: \mathbb{R}_{+}^{*} \rightarrow \mathbb{R}, \\
& \forall(x, y) \in D, f(x, y)=A\left(x \mathrm{e}^{y}\right) \cos (x)+B\left(x \mathrm{e}^{y}\right) \sin (x)+1
\end{aligned}
$$

Hence, the general solution of class C^{2} of $(*)$ on D is of the form

$$
f(x, y)=A\left(x \mathrm{e}^{y}\right) \cos (x)+B\left(x \mathrm{e}^{y}\right) \sin (x)+1
$$

for $A: \mathbb{R}_{+}^{*} \rightarrow \mathbb{R}$ and $B: \mathbb{R}_{+}^{*} \rightarrow \mathbb{R}$ of class C^{2}.

Exercise 4.

1. (1) Series (1) is a geometric series of ratio $\mathrm{e}^{-1} \in(-1,1)$, hence is convergent.
(2) Let $n \in \mathbb{N}$. We have $n^{2} \geq n$, hence $0 \leq \mathrm{e}^{-n^{2}} \leq \mathrm{e}^{-n}$. Hence, by the comparison test (and since Series (1) is convergent), Series (2) is convergent.
(3) We have $\lim _{n \rightarrow+\infty} \mathrm{e}^{-1 / n^{2}}=1 \neq 0$, hence Series (3) is divergent.
2. Since $\alpha>0, \frac{1}{n^{2 \alpha}} \underset{n \rightarrow+\infty}{\longrightarrow} 0$ and we hence have the following equivalent:

$$
\exp \left(\frac{1}{n^{2 \alpha}}\right)-1 \underset{n \rightarrow+\infty}{\sim} \frac{1}{n^{2 \alpha}}>0
$$

Now, the sequence $\left(\frac{1}{n^{2 \alpha}}\right)_{n>1}$ is the general term of a convergent series if and only if $2 \alpha>1$ if and only if $\alpha>1 / 2$ (Riemann). Hence, by the equivalent test, the series is convergent if and only if $\alpha>1 / 2$.
3. For $n \in \mathbb{N}$ set

$$
u_{n}=\frac{n}{2^{n}+1}
$$

Clearly the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ is a sequence with positive terms. Now, for $n \in \mathbb{N}$,

$$
\frac{u_{n+1}}{u_{n}}=\frac{n+1}{2^{n+1}+1} \frac{2^{n}+1}{n} \underset{n \rightarrow+\infty}{\sim} \frac{n}{2^{n+1}} \frac{2^{n}}{n}=\frac{1}{2} \underset{n \rightarrow+\infty}{\longrightarrow} \frac{1}{2}<1 .
$$

Hence, by the ratio test, the series converges.
4. a) For $n \in \mathbb{N}$ define

$$
u_{n}=\frac{(-1)^{n}}{2 n+1}
$$

- Clearly, the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ is an alternating sequence.
- For $n \in \mathbb{N},\left|u_{n+1}\right|=\frac{1}{2 n+3} \leq \frac{1}{2 n+1}=\left|u_{n}\right|$.
- $\lim _{n \rightarrow+\infty} u_{n}=0$.

Hence, by the alternating series test, the series $\sum_{n} u_{n}$ is convergent.
b) Let $N \in \mathbb{N}^{*}$. By the alternating series test, we moreover know that

$$
\left|S-S_{N}\right|=\left|\sum_{n=N+1}^{+\infty} u_{n}\right| \leq\left|u_{N+1}\right| .
$$

Hence it's sufficient to choose N such that $\left|u_{N+1}\right| \leq 10^{-3}$. Now,

$$
\left|u_{N+1}\right| \leq 10^{-3} \Longleftrightarrow \frac{1}{2 N+3} \leq 10^{-3} \Longleftrightarrow 2 N+3 \geq 1000 \Longleftrightarrow 2 N \geq 997
$$

so we can choose $N=499$.
5. We denote by $\left(u_{n}\right)_{n \in \mathbb{N}^{*}}$ the general term of the series. Since $\alpha>0$, we have $\lim _{n \rightarrow+\infty} \frac{(-1)^{n}}{n^{\alpha}}=0$, hence

$$
u_{n}=\exp \left(\frac{(-1)^{n}}{n^{\alpha}}\right)-1 \underset{n \rightarrow+\infty}{=} \frac{(-1)^{n}}{n^{\alpha}}+\frac{1}{2 n^{2 \alpha}}+o\left(\frac{1}{n^{2 \alpha}}\right)
$$

For $n \in \mathbb{N}^{*}$, define

$$
a_{n}=\frac{(-1)^{n}}{n^{\alpha}}, \quad b_{n}=u_{n}-a_{n}
$$

Clearly, the sequence $\left(a_{n}\right)_{n \in \mathbb{N}^{*}}$ is the general term of a convergent alternating Riemann series (since $\alpha>0$). Now,

$$
b_{n} \underset{n \rightarrow+\infty}{\sim} \frac{1}{2 n^{2 \alpha}}>0
$$

and $\left(b_{n}\right)_{n \in \mathbb{N}^{*}}$ is the general term of a convergent series if and only if $2 \alpha>1$, if and only if $\alpha>1 / 2$. Hence, by the equivalent test, the series $\sum_{n} b_{n}$ converges if and only if $\alpha>1 / 2$. We hence conclude that the series $\sum_{n} u_{n}$ converges if and only if $\alpha>1 / 2$.

