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Exercise 1.

1. Let a > 0. Since )] — 0,
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The series }, un is a convergent series as it’s an alternating Riemann series (with o > 0). Moreover,
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and by the equivalent test, 3 v, is convergent if and only if 2c > 1 if and only if & > 1/2.
Hence, by sum, Series (1) is convergent if and only & > 1/2.

2. We use ﬂww_m ratio test (which is valid since Series (2) is a series with positive terms): for n € N define
n!
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Hence, by the ratio test Series (2) is convergent.

3. We know that
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vz € (-1,1], In(l+2z)= W %ea.
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Exercise 2.
1. For n € N define u, = E
1++/n

¢ The sequence (un)nen is clearly an alternating series,
e clearly, un, — 0,
n—++00

e clearly, the sequence h_eﬂ_v is decreasing,

neN

hence, by the >Fm5mﬁ=m Series Test, the series 3, u, is convergent.

Now |un| L ._.u hence, by the equivalent test (and Riemann with e = 1/2 < 1) we conclude that the

series § ., un is not absolutely convergent.

2. Since 3, un is an alternating series, we have, for N € N,

Ry >0 if Niseven
Ry <0 if Nisodd

(the sign of the remainder is that of its first term), and

1
Ry| < |u P —
[By] < lunsal TN
(the absolute value of the remainder is non-greater than that of its first term).
3. From the previous inequality,
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hence it is sufficient to find N such that

—_— <1078,
1++N+1
Now,
% <107 e 1+VNT121000 <= VN +12999 <= N+12 999
+ e
= N >0999% — 1= (999 — 1)(999 + 1) = 998 x 1000 = 998000.
Exercise 3.
B’ <50
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hence, by the equivalent test (and Riemann with & = 2 > 1) we conclude that the series 3 e convergent.

We use the integral comparison test: define the function

f:[l400) — R
22

—
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‘We show that the function f is non-increasing: for z € [1,+00),
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2z(1 + %) — 4% % 1—2 _ <0,
T.Tapu (1+2z9)
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Hence, by the integral comparison test, and for N € N*,
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(Notice, moreover that S — Sy > 0 since S is a series with positive terms). Now, for N € N* and X > N,
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Hence, in order to have |§ — Sy| < € it is sufficient to have N > 1/e.

Exercise 4.
1. Let = € (—R, R). Then,
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n=2 =1
Hence,
+oo +o0 400 +oo
zf"(z) + (L +z)f (z) - Af(z) = M?. + 1)nanyi1z™ + Mu?. + ap+1z™ + M na,z™ — A Mupaa_..
n=1 n=0 n=1 n=0
+oo +o0 +oo +oo
= M? +1)nanaz" + M”? +1)anaz™ + Ma@:a: - >Mu?_a=
n=0 n=0 n=0 n=0
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Hence, by the Identity Theorem,
£ is a solution of (E)) <= Vr €N, (n+1)2aa41 + (n— Aaq = 0.

. Hence,

a2 =0

v =0.
VrReN, (n+1)%ansm +(n—Aa, =0 > VneN, an =0

f is a solution of (E)) and f(0) =0 <=

Hence the only solution f of (E) that possesses a power series expansion and such that f(0) = 0 is the nil
function.
. a) In the case A =1, f is a solution of (E_,) and f(0) =1 if and only if

an

g andag =1,

YneEN, g1 =~

i.e., if and only if
YneEN, an=

To see this, we can write, for n € N,
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and conclude with ag = f(0) = 1.
We determine the radius of convergence of f in this case: let 2 € C*. Then,
n+1

An 2™ 7+ 1 n=++oo
hence R = +oo0.
b) For z € R,
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Exercise 5.
- ch_._. 2
1. Let z € C* and define u, = = z*". Then
Un41 A2 g 22" 2]\ oo il >v/E
Un e 2m| T 5 T va _._.I.|+vun 1 if |2| = V5

0 iflz] <5,

hence R = /5.
Now, for = € (—/5,/5), -
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fe=3, mﬂv “Taofs
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2. Let z € C. By the Magical Lemma, we know that the series

M ﬁn.ﬂ H.N:

n

converges if |z| < R and diverges if |z| > R. Hence, for z € R, the series

an 2\n
M n+1 ?.. v
=
converges if |z?| < R and diverges if |%| > R, i.e., converges if |z| > +/R and diverges if [z| < V. Hence
Ry=vER.

Let = € (—R, R). Then
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.\ﬂwau&lsna:+uu "

Hence, for z # 0,

+g =Hu»
glz) = Wm 5 :g.\T._H (=)™ = Mm\n_ F(t)dt.

n=0
In the case z = 0 we have g(0) = ag = f(0).
a) Let z € C such that |2| < Rp. We know that the series ), b,2™ converges absolutely, hence, since

o

Vn €N, |anz"| < [bn2"],
we conclude (by the Comparison Test) that the series Y a,z™ also converges absolutely, and hence
|2] € R,. This show that |z| < By = |z| € Ry, hence R, < R,.
1
b) i) The radius of convergence of the power series 3", n8"2z" is 1/8, hence R > 3
ii) The radius of convergence of the power series 3., 24351 and the radius of convergence of the power
series }, n®z™ is also 1. Hence R =1.

Exercise 6. We first notice that for all f,g € E, ©(f,g) = (g, f), hence we only need to check that ¢ is linear
with respect to one of its arguments.
Let f,g,h € E and A € R. Then

1 1
ol +am) = [ (f+xa OW @t = [ro+eme
1 1
= .\ (Fyk(t)de +>\ (o' (t)h'(£) dt
0 0
=(f, h) + Ap(g, h).
Hence ¢ is a symmetric bilinear form on E. The quadratic form ¢ associated with ¢ is:

q: E— ; R
ey 2
ml‘\ﬂ“ ()" dt.



