

SCAN 2 — Solution of Math Test #4

March 26, 2018

1. Let $\alpha > 0$. Since $\frac{(-1)^n}{n^{\alpha}} \xrightarrow[n \to +\infty]{} 0$,

$$\exp\left(\frac{(-1)^n}{n^\alpha}\right) - \cos\left(\frac{(-1)^n}{n^\alpha}\right) = \sum_{n \to +\infty} \left(1 + \frac{(-1)^n}{n^\alpha} + \frac{1}{2n^{2\alpha}} + o\left(\frac{1}{n^{2\alpha}}\right)\right) - \left(1 - \frac{1}{2n^{2\alpha}} + o\left(\frac{1}{n^{2\alpha}}\right)\right)$$

$$= \frac{(-1)^n}{n^\alpha} + \frac{1}{n^{2\alpha}} + o\left(\frac{1}{n^{2\alpha}}\right).$$

Now define the sequence $(u_n)_{n\in\mathbb{N}^*}$ and $(v_n)_{n\in\mathbb{N}^*}$ as

$$\forall n \in \mathbb{N}^*, \qquad u_n = \frac{(-1)^n}{n^\alpha}, \qquad v_n = \exp\left(\frac{(-1)^n}{n^\alpha}\right) - \cos\left(\frac{(-1)^n}{n^\alpha}\right) - u_n.$$

The series $\sum_n u_n$ is a convergent series as it's an alternating Riemann series (with $\alpha > 0$). Moreover

$$v_n \stackrel{=}{\underset{n \to +\infty}{=}} \frac{1}{n^{2\alpha}} + o\left(\frac{1}{n^{2\alpha}}\right) \underset{n \to +\infty}{\sim} \frac{1}{n^{2\alpha}} > 0$$

and by the equivalent test, $\sum_n v_n$ is convergent if and only if $2\alpha > 1$ if and only if $\alpha > 1/2$. Hence, by sum, Series (1) is convergent if and only $\alpha > 1/2$.

2. We use the ratio test (which is valid since Series (2) is a series with positive terms): for $n \in \mathbb{N}$ define $u_n = \frac{n!^2}{(2n)!}$. Then:

$$\frac{u_{n+1}}{u_n} = \frac{(n+1)!^2}{(2n+2)!} \frac{(2n)!}{n!^2} = \frac{(n+1)^2}{(2n+1)(2n+2)} \xrightarrow{n \to +\infty} \frac{1}{4} < 1.$$

Hence, by the ratio test Series (2) is convergent.

3. We know that

$$\forall x \in (-1,1], \ \ln(1+x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n} x^n$$

Now,

$$S = -\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n} \left(-\frac{1}{3}\right)^n,$$

$$S = -\ln\left(1 - \frac{1}{3}\right) = -\ln\left(\frac{2}{3}\right) = \ln\left(\frac{3}{2}\right).$$

1. For $n \in \mathbb{N}$ define $u_n = \frac{(-1)^n}{1 + \sqrt{n}}$.

- The sequence (u_n)_{n∈N} is clearly an alternating series,
- clearly, the sequence $(|u_n|)_{n\in\mathbb{N}}$ is decreasing.

hence, by the Alternating Series Test, the series $\sum_n u_n$ is convergent

Now $|u_n| \underset{n \to +\infty}{\sim} \frac{1}{n^{1/2}}$ hence, by the equivalent test (and Riemann with $\alpha=1/2<1$) we conclude that the series $\sum_n u_n$ is not absolutely convergent.

2. Since $\sum_{n} u_n$ is an alternating series, we have, for $N \in \mathbb{N}$,

$$\begin{cases} R_N \ge 0 & \text{if } N \text{ is even} \\ R_N \le 0 & \text{if } N \text{ is odd} \end{cases}$$

(the sign of the remainder is that of its first term), and

$$|R_N| \le |u_{N+1}| = \frac{1}{1 + \sqrt{N+1}}$$

(the absolute value of the remainder is non-greater than that of its first term).

$$\operatorname{error}_{N} = |S - S_{N}| = |R_{N}| \le \frac{1}{1 + \sqrt{N+1}}$$

hence it is sufficient to find N such that

$$\frac{1}{1 + \sqrt{N+1}} \le 10^{-3}.$$

$$\frac{1}{1+\sqrt{N+1}} \leq 10^{-3} \iff 1+\sqrt{N+1} \geq 1000 \iff \sqrt{N+1} \geq 999 \iff N+1 \geq 999^2$$

$$\iff N \geq 999^2 - 1 = (999-1)(999+1) = 998 \times 1000 = 998000.$$

$$\frac{n^2}{1+n^4} \underset{n \to +\infty}{\sim} \frac{1}{n^2} > 0$$

hence, by the equivalent test (and Riemann with $\alpha=2>1$) we conclude that the series $\sum_n \frac{n^2}{1+n^4}$ is convergent. We use the integral comparison test: define the function

$$f: [1, +\infty) \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{x^2}{1+x^4}.$$

We show that the function f is non-increasing: for $x \in [1, +\infty)$,

$$f'(x) = \frac{2x(1+x^4)-4x^5}{\left(1+x^4\right)^2} = 2x\frac{1-x^4}{\left(1+x^4\right)^2} \leq 0.$$

Hence, by the integral comparison test, and for $N \in \mathbb{N}^*$,

$$S - S_N = \sum_{n=N+1}^{+\infty} \frac{n^2}{1 + n^4} = \sum_{n=N+1}^{+\infty} f(n) \le \int_N^{+\infty} f(t) dt.$$

(Notice, moreover that $S - S_N \ge 0$ since S is a series with positive terms). Now, for $N \in \mathbb{N}^*$ and X > N,

$$\int_N^X f(t)\,\mathrm{d}t = \int_N^X \frac{t^2}{1+t^4}\,\mathrm{d}t \le \int_N^X \frac{\mathrm{d}t}{t^2} = \left[-\frac{1}{t^2}\right]_{t=N}^{t=X} = \frac{1}{N} - \frac{1}{X} \xrightarrow{X \to +\infty} \frac{1}{N}.$$

Hence, in order to have $|S - S_N| < \varepsilon$ it is sufficient to have $N > 1/\varepsilon$.

1. Let $x \in (-R, R)$. Then

$$f'(x) = \sum_{n=1}^{+\infty} n a_n x^{n-1} = \sum_{n=0}^{+\infty} (n+1) a_{n+1} x^n$$

$$f''(x) = \sum_{n=2}^{+\infty} n(n-1)a_n x^{n-2} = \sum_{n=1}^{+\infty} (n+1)na_{n+1}x^{n-1}.$$

$$\begin{split} xf''(x) + (1+x)f'(x) - \lambda f(x) &= \sum_{n=1}^{+\infty} (n+1)na_{n+1}x^n + \sum_{n=0}^{+\infty} (n+1)a_{n+1}x^n + \sum_{n=1}^{+\infty} na_nx^n - \lambda \sum_{n=0}^{+\infty} a_nx^n \\ &= \sum_{n=0}^{+\infty} (n+1)na_{n+1}x^n + \sum_{n=0}^{+\infty} (n+1)a_{n+1}x^n + \sum_{n=0}^{+\infty} na_nx^n - \lambda \sum_{n=0}^{+\infty} a_nx^n \\ &= \sum_{n=0}^{+\infty} \Big((n+1)na_{n+1} + (n+1)a_{n+1} + na_n - \lambda a_n \Big) x^n \\ &= \sum_{n=0}^{+\infty} \Big((n+1)^2 a_{n+1} + (n-\lambda)a_n \Big) x^n \end{split}$$

Hence, by the Identity Theorem

$$f$$
 is a solution of $(E_{\lambda}) \iff \forall n \in \mathbb{N}, \ (n+1)^2 a_{n+1} + (n-\lambda)a_n = 0$

$$f \text{ is a solution of } (E_{\lambda}) \text{ and } f(0) = 0 \iff \begin{cases} a_0 = 0 \\ \forall n \in \mathbb{N}, \ (n+1)^2 a_{n+1} + (n-\lambda) a_n = 0 \end{cases} \iff \forall n \in \mathbb{N}, \ a_n = 0.$$

Hence the only solution f of (E_{λ}) that possesses a power series expansion and such that f(0) = 0 is the nil function.

3. a) In the case $\lambda = 1$, f is a solution of (E_{-1}) and f(0) = 1 if and only if

$$\forall n \in \mathbb{N}, \ a_{n+1} = -\frac{a_n}{n+1} \text{ and } a_0 = 1,$$

$$\forall n \in \mathbb{N}, \ a_n = \frac{(-1)^n}{n!}.$$

To see this, we can write, for $n \in \mathbb{N}$,

$$a_{n+1} = a_0 \prod_{k=0}^{n} \frac{a_{k+1}}{a_k} = a_0 \prod_{k=0}^{n} (-1)^k \frac{1}{k+1} = a_0 \frac{(-1)^{n+1}}{(n+1)!}$$

and conclude with $a_0=f(0)=1.$ We determine the radius of convergence of f in this case: let $z\in\mathbb{C}^\bullet.$ Then,

$$\left| \frac{a_{n+1}z^{n+1}}{a_nz^n} \right| = \frac{|z|}{n+1} \underset{n \to +\infty}{\longrightarrow} 0$$

hence $R = +\infty$

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{n!} x^n = e^{-x}.$$

1. Let $z \in \mathbb{C}^*$ and define $u_n = \frac{(-1)^n}{5^n} z^{2n}$. Then

$$\left|\frac{u_{n+1}}{u_n}\right| = \left|\frac{z^{2n+2}}{5^{n+1}} \frac{5^n}{z^{2n}}\right| = \frac{|z|^{2n}}{5^n} = \left(\frac{|z|}{\sqrt{5}}\right)^{2n} \xrightarrow[n \to +\infty]{} \begin{cases} +\infty & \text{if } |z| > \sqrt{5} \\ 1 & \text{if } |z| = \sqrt{5}, \end{cases}$$

Now, for $x \in (-\sqrt{5}, \sqrt{5})$

$$f(x) = \sum_{n=0}^{+\infty} \left(\frac{-x^2}{5}\right)^n = \frac{1}{1+x^2/5}.$$

Let $z \in \mathbb{C}$. By the Magical Lemma, we know that the series

ence, for
$$x \in$$

 $\sum_n \frac{a_n}{n+1} z^n$

converges if |z| < R and diverges if |z| > R. Hence, for $x \in \mathbb{R}$, the series

$$\sum_{n} \frac{x_n}{n+1} (x^2)^n$$

converges if $|x^2| < R$ and diverges if $|x^2| > R$, i.e., converges if $|x| > \sqrt{R}$ and diverges if $|x| < \sqrt{R}$. Hence $R_g = \sqrt{R}$.

Let $x \in (-R, R)$. Then

$$\int_0^x f(t) dt = \sum_{n=0}^{+\infty} \frac{a_n}{n+1} x^{n+1}.$$

$$g(x) = \frac{1}{x^2} \sum_{n=0}^{+\infty} \frac{a_n}{n+1} (x^2)^{n+1} = \frac{1}{x^2} \int_0^{x^2} f(t) \, \mathrm{d}t.$$

In the case x = 0 we have $g(0) = a_0 = f(0)$.

3. a) Let $z \in \mathbb{C}$ such that $|z| < R_b$. We know that the series $\sum_n b_n z^n$ converges absolutely, hence, since

$$\forall n \in \mathbb{N}, |a_n z^n| \le |b_n z^n|,$$

we conclude (by the Comparison Test) that the series $\sum_n a_n z^n$ also converges absolutely, and hence $|z| \le R_a$. This show that $|z| \le R_b \Longrightarrow |z| \le R_a$, hence $R_b \le R_a$.

- i) The radius of convergence of the power series $\sum_n n8^n z^n$ is 1/8, hence $R \ge \frac{1}{8}$.
- ii) The radius of convergence of the power series $\sum_n \frac{n}{3} z^n$ is 1 and the radius of convergence of the power series $\sum_{n} n^3 z^n$ is also 1. Hence R = 1.

Exercise 6. We first notice that for all $f,g\in E, \varphi(f,g)=\varphi(g,f)$, hence we only need to check that φ is linear with respect to one of its arguments. Let $f,g,h\in E$ and $\lambda\in \mathbb{R}$. Then

$$\begin{split} \varphi(f+\lambda g,h) &= \int_0^1 (f+\lambda g)'(t)h'(t)\,\mathrm{d}t = \int_0^1 \big(f'(t)+\lambda g'(t)\big)h'(t)\,\mathrm{d}t \\ &= \int_0^1 \big(f'(t)h'(t)\,\mathrm{d}t + \lambda \int_0^1 \big(g'(t)h'(t)\,\mathrm{d}t \\ &= \varphi(f,h) + \lambda \varphi(g,h). \end{split}$$

Hence φ is a symmetric bilinear form on E. The quadratic form q associated with φ is:

$$q: E \longrightarrow \mathbb{R}$$

$$f \longmapsto \int_0^1 (f'(t))^2 dt.$$