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Exercise 1.

1. We compute:
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Hence,
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2. We first orthogonalize the basis %:
e Set up = go.
o Notice that ug L g, hence we set u; = g;.
o Set uz = ga + Augp + puy, with
_ _tpluoga)  2/3 1 __plu1,g2)
A= — = == p==—=<=0,
(o0, uo) 23 plur, u)
ie.,
e
U =02 mho.
Now we divide each of ug, uy and uy by their norm to obtain an orthonormal basis: set
Uy 1 -
vV = —FF—— = 790
Veluo,u) V2
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(U2, 42) = ¢(92,92) — 30(90,92) + 590, 90) = 5 — g+ 5 = g5
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The basis %’ = (vo,v1,v2) is an orthonormal basis of F.

3. a)

hence

H\,\moL\nxa\ml\m
0 3/2 0
0 0 3/2x/62

The matrix P isn’t an orthogonal matrix, since clearly *PP # I3.
In fact there’s no reason for P to be an orthogonal matrix, since the basis 4 isn’t an orthonormal basis

of F.2
b) M’ = I3, since %' is an orthonormal basis with respect to ¢.
c) M' ='PMP.

4. a) Let f € E. Since (vp, v1,v2) is an orthonormal basis of F,

pr(f) = @(f,v0)vo + @(f, v1)v1 + @(f, v2)va.

b)
pr(93) = (93, v0)vo + (93, v1)v1 + (g5, va)vs.
Now,
#(g3,v0) =0,
3 316
p(g3, 1) = ,\wﬁ.ﬁ_sv =25z =%
(g3, v2) = 0.
Hence
6 3
pr(gs) = w\uMS =0

c) Observe that
m = infu € Fllgs — ufl},

and we know that this inf is attained at pr(ga):

m=|gs— ﬂl.&v__w.

Now,
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Exercise 2. Observe that A is a real symmetric matrix, hence A is diagonalizable. 4 is an obvious eigenvalue
of A since the matrix

-4 2 =2

A-d43=| 2 -1 1

-2 1 -1
is clearly of rank 1. So we conclude that 4 is an eigenvalue of A of multiplicity 2. Using the trace, we conclude
that —2 is the other eigenvalue of A.
The equation of the eigenspace Ej is:

—-2z+y—2=0.

Since E_p 1 E4, we conclude that
-2
X.g= |1
-1
is an eigenvector of A associated with the eigenvalue —2.
Now we choose an eigenvector associated with the eigenvalue 4, e.g.,

0
Xe= |}
1

2More precisely, the theorem we covered is the following: if @ is an orthonormal basis of a Euclidean vector space (E, ) and @
is a family of vectors of E, then

@' is an orthonormal basis of (E, ¢) if and only if the matrix [#'] g is an orthogonal matrix.



Using a cross-product, we determine another eigenvector associated with the eigenvalue 4:

-2 0 2
Xi=X_gxXe=|1]|x|1]=] 2
=1 T -2

We divide these vectors by their norm, and put them in a matrix:

-2/V6 0 1/V3
RESIPTVE T 13
-1/V6 1/v2 -1V/3

By construction, P is an orthogonal matrix, and if we set

we have A = PD'P.

Exercise 3.
1. Since A is a real symmetric matrix, such a P and D exist.

2. e 0 is an obvious eigenvalue since Tk A = 3 # 4 (the first and last columns are proportional). By the
Rank-Nullity Theorem, the multiplicity of 0 is 4 — 3 = 1.

e —2 is an obvious eigenvalue of A since the matrix

2 =2
ey
Dis0

A+2, =

- oo
O o -

is of rank 2. This shows that —2 is an eigenvalue of multiplicity 4 — 2 = 2.
¢ Another obvious eigenvalue is 2 since the matrix

-3 0 0 1
0 -2 -2 0
. 252 0
1 0 0 -3

is of rank 3. This show that 2 is an eigenvalue of multiplicity 4 — 3 = 1.
(Al this is consistent with the trace of A being equal to -2).
3. a) i)
(M) = (a+d)* - 4(ad — bc) = a® + 2ad + d? — dad + 4bc = a® + d* — 2ad + 4bc.

ii) Since g is a homogeneous polynomial of degree 2 with respect to the components of M, we conclude
that ¢ is a quadratic form.

iii) From the form of ¢ thus obtained, we directly determine the matrix of g in the basis Z:
-1

1
0
lo)e = 0

onoo
oo
(i — 1)

i

and we recognize that [g]g@ = —A. Hence the result with o = —1.
iv) From Question 2, sign(A) = (1,2). Since |g}@ = —A, the signature of g is sign(g) = (2,1). Hence g is
not positive definite, hence the polar form of ¢ is not an inner product on E.

Exercise 4.
1. Let (z,y) € R?. Then:

B f(z,y) = 25y + 22, Baf(z,y) =2* +3" — 1.

Hence,
- 2zy+22=0
(2,y) is a critical point of f < PA ST a0

z=0 o y=-1

= 32 —-1=0 z2+2=0 (impossible)
z=0 z=0

e ot it or eﬂlh
B V3

Hence f possesses two critical points on R?, namely

f3) = 05

i : 2
To determine the nature of these critical points, we compute the Hessian matrix of f. For (z,y) € R?,

2y+2 2z
Hg ) f = A 2 aﬁv

e For the critical point Ao. 1 ,\wu”
= _(2/vV3+2 0
vt = 0 6//3)°
the signature of which is (2,0), hence f possesses a local minimum at (0,1/v/3).
o For the critical point (0,—1/v/3):

—2/V/3+2 0
EPF@&HA \o+ Ia\,\wv.

the signature of which is (1,1), hence f possesses a saddle point at (0,-1/4/3).

a) See Figure 4.

b) Since D is closed and bounded, and since f is continuous, by the Extreme Value Theorem, f is bounded
on D and attains its bounds, hence m and M exist.

c) We need to study the minimum and maximum value of f on 8D:
o first on the lower segment [1,1] x {0}: define the auxiliary function
g: [-L1] — R
z  +— f(z,0) =22
Clearly, min g = 0 and maxg = 1.
e on the half circle: define the auxiliary function
g: [0, — R
z +— f(cos6,sinf) = cos® 6.
Clearly, ming = 0 and maxg = 1. :
Now, the only critical point of f in D) to consider is (0,1//3) where f has a local minimum:
)-8
i} (!ml ™
Finally, we conclude that
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