

No documents, no calculators, no cell phones or electronic devices allowed. Cute and fluffy pets allowed (for moral support only).

All your answers must be fully (but concisely) justified, unless noted otherwise.

Exercise 1. Let $E = C([-1, 1], \mathbb{R})$ be the vector space of real-valued continuous functions on [-1, 1], and define

$$\varphi: E \times E \longrightarrow \mathbb{R}$$

$$(f,g) \longmapsto \int_{-1}^{1} f(t)g(t) \, \mathrm{d}t.$$

You're given that φ is an inner product on E. For $n \in \mathbb{N}$ we define the element g_n of E as:

$$g_n: [-1,1] \longrightarrow \mathbb{R}$$
 $t \longmapsto t^n.$

We define

$$\mathcal{B} = (g_0, g_1, g_2).$$

and $F = \operatorname{Span}\{g_0, g_1, g_2\}$. You're given that $\mathcal B$ is a basis of F (it's quite obvious that $\mathcal B$ is an independent family). We still denote by φ the restriction of φ to F.

- 1. Explicit the matrix $M = [\varphi]_{\mathscr{B}}$ of φ in the basis \mathscr{B} .
- 2. Apply the Gram-Schmidt process to the basis \mathcal{B} of F to determine an orthonormal basis \mathcal{B}' of F. You will call v_0 , v_1 and v_2 the vectors of \mathcal{B}' .
- 3. a) Write the matrix $P = [\mathcal{B}']_{\mathcal{B}}$. Is P an orthogonal matrix? (Is this surprising?)
 - b) Give (without any computations) the matrix $M' = [\varphi]_{\mathscr{B}'}$ of φ in \mathscr{B}' .
 - c) What relation exists between M, M' and P? (no justifications required).
- 4. Let $p_F: E \to E$ be the orthogonal projection onto F (orthogonal with respect to φ).
 - a) For $f \in E$, recall the general formula for $p_F(f)$.
 - b) Determine $p_F(g_3)$.
 - c) Determine the value of

$$m = \inf_{(a,b,c) \in \mathbb{R}^3} \int_{-1}^{1} (t^3 - a - bt - ct^2)^2 dt.$$

Exercise 2. Let

$$A = \begin{pmatrix} 0 & 2 & -2 \\ 2 & 3 & 1 \\ -2 & 1 & 3 \end{pmatrix}.$$

Find an orthogonal matrix P and a diagonal matrix D such that $A = PD^{t}P$.

Exercise 3. We define the matrix

$$A = \begin{pmatrix} -1 & 0 & 0 & 1 \\ 0 & 0 & -2 & 0 \\ 0 & -2 & 0 & 0 \\ 1 & 0 & 0 & -1 \end{pmatrix}.$$

- 1. Explain why there exists a diagonal matrix D and an orthogonal matrix P such that $A = PD^{t}P$. (You're not asked to determine P and D explicitly).
- 2. Determine the eigenvalues of A as well as their multiplicities.
- 3. Let $E = M_2(\mathbb{R})$ be the real vector space of 2×2 matrices with real coefficients. We define

$$q: E \longrightarrow \mathbb{R}$$

 $M \longmapsto (\operatorname{tr}(M))^2 - 4 \operatorname{det}(M).$

We also define the following vectors of *E*:

$$A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \qquad \qquad A_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \qquad \qquad A_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \qquad \qquad A_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix},$$

and $\mathcal{B} = (A_1, A_2, A_3, A_4)$. You're given that \mathcal{B} is a basis of E.

- a) i) Let $M \in E$, say $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ for some $a, b, c, d \in \mathbb{R}$. Give an explicit expression of q(M) in terms of a, b, c, d.
 - ii) Deduce that q is a quadratic form on E.
 - iii) Check that there exists $\alpha \in \mathbb{R}$ such that $[q]_{\mathscr{B}} = \alpha A$ (and give the value of α).
- b) Give the signature of q. Is the polar form of q an inner product on E?

Exercise 4. Let

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

 $(x,y) \longmapsto x^2 - y + y^3 + yx^2,$

and

$$D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1, \ y \ge 0\}.$$

- 1. Find the critical points of f on \mathbb{R}^2 , and determine their nature.
- 2. a) On the same figure, sketch D and the critical points of f that belong to D.
 - b) Explain why $m = \min_{D} f$ and $M = \max_{D} f$ exist.
 - c) Determine the value of $m = \min_{D} f$ and of $M = \max_{D} f$.

Exercise 5. Let E be a real vector space and let φ be an inner product on G. Let F and G be two subspaces of E such that:

- E = F + G,
- $F \subset G^{\perp}$.

Show that $F = G^{\perp}$.

You may want to proceed as follows: let $u \in G^{\perp}$. Explain why there exists $u_F \in F$ and $u_G \in G$ such that $u = u_F + u_G$. Then consider $\varphi(u, u_G)$...