SCAN 2 — Quiz #14 — 12 May 15, 2018 Name: CARS Anne-Laure Exercise 1. Let $\varphi: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ be the symmetric bilinear form on \mathbb{R}^3 such that the matrix of φ in the standard basis std = (e_1, e_2, e_3) of \mathbb{R}^3 is: $$[\varphi]_{\rm std} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 2 \\ 0 & 2 & 0 \end{pmatrix}.$$ 1. Determine the value of $\varphi(e_2, e_2)$. $$\varphi(e_2,e_2) = -1$$ 2. Is φ a dot product on \mathbb{R}^3 ? justify your answer. 3. Give a basis of the orthogonal of (1,1,1) with respect to φ . $$\varphi(e_{1},e_{2}) = \varphi(0 \wedge 0) \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 2 \\ 0 & 2 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = (0 \wedge 10) \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} = -1$$ $$\varphi((x_1,y_1,z),(x_1,y_1)) = (x_1,y_2) \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 2 \\ 0 & 2 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = (x_1,y_2) \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}$$ 1) - (1 " 111 Exercise 2. Let $\varphi : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ be the symmetric bilinear form on \mathbb{R}^2 such that the matrix of φ in the standard basis std = (e_1, e_2) of \mathbb{R}^2 is: $$A = [\varphi]_{\mathrm{std}} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}.$$ Let $$u_1 = (1,1), u_2 = (1,-1).$$ You're given that $\mathscr{B} = (u_1, u_2)$ is a basis of \mathbb{R}^2 . We denote by $B = [\varphi]_{\mathscr{B}}$ the matrix of φ in the basis \mathscr{B} , and by q the quadratic form associated with φ . 1. Explicit the change of basis matrix $P = [\mathcal{B}]_{std}$. 2. Give a relation between A, B and P. BIPAP 3. Explicit the matrix B. $$B = [\varphi]_{\mathscr{B}} = \begin{pmatrix} 6 & \bigcirc \\ \bigcirc & \downarrow \end{pmatrix}$$ 4. Is the basis \mathscr{B} an orthogonal basis of \mathbb{R}^2 with respect to φ ? justify your answer. 5. Let $v \in \mathbb{R}^2$ and let $[v]_{\mathscr{B}} = \begin{pmatrix} x \\ y \end{pmatrix}$ be the coordinates of v in \mathscr{B} . Give the expression of q(v) in terms of x and y. 6. Is φ an inner product on \mathbb{R}^2 ? justify your answer. $$B = (1 - 1)(2 - 1)(1 - 1) = (1 - 1)(3 - 1)$$ $$=\begin{pmatrix} 6 & 0 \\ 0 & 2 \end{pmatrix}$$ $$(1.1)^{2} (1)^{2} (1) = (1)^{2} = 0$$