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f:[l,400) — R
1

r o =

x

Clearly f is continuous and lim f(z) = 0. Yet it is well-known that the improper integral

T—+00
“+o0
| f@a

diverges (Riemann integral at +oo with « =1 <1).

Exercise 2.

1. The function 2 — e~ V***% is continuous on [1,400) hence the improper integral (1) is improper at -+oo.
Now observe that
Vr € [1,+00), 22 + x>

hence

hence
2

Vr € [1,+00), 0 <e VI T* <%,

—+o0
/ e “dx
1

is convergent hence, by the comparison test, the improper integral (1) is convergent.

Now we know that the improper integral

2. The function
1 —cos(t) _,
—e

t2

is continuous on (0, 4+00) hence the improper integral (2) is improper at 0 and at +oc.

t—

e Convergence at 07: by the well-known equivalents,

1 —cos(t) _, 1 1
12 ¢ z—0t 2 x 2 z—o0t

M| —

Hence the improper integral (2) is falsely improper at 0% hence the improper integral (2) converges
at 0F.

e Convergence at +o00: observe that

1—cos(t) _
Vi € [1,+00), 0 < —© t<

+o0
2
/ 7 dt
1 t

converges at +oo (Riemann at +o0o with & = 2 > 1) hence, by the comparison test, the improper
integral (2) converges at +o0.

Wl o

We know that the improper integral

We hence conclude that the improper integral (2) is convergent.



3. Let z € R. The function o

14¢

is continuous on (0, 1] (this interval must be opened at 0 to take care of the case x < 0), hence the improper
integral (3) is improper at 0. Now,

t—

£ 1
~ 7= >0,
L+t t0+ t==

and we know, by Riemann at +oo, that the improper integral

Ldt
0o t°
converges if and only if « = —z < 1. Hence, by the equivalent test, the improper integral (3) converges if
and only if z > —1.
Exercise 3.
1. The function
R In(t)
1+¢2

is continuous on [1,+00) hence the improper integral I is improper at +o0o. Now,

g ) () ()

1412 t—>+o0 t2 Vit totoo

Hence there exists A > 1 such that

Vte[A t3/2 <1

€ [ 9 +OO), 1 + t2 —

Then In(t) )
n

Now we know that the improper integral

oo ¢

is convergent at +oo (Riemann at +o0o with « = 3/2 > 1) hence, by the comparison test, the improper
integral I converges at +o0.

2. The function
In(t)

t—
14 ¢2

is continuous on (0, 1] hence the improper integral J is improper at 0. Let X € (0,1). Then, using the

substitution s = 1/t yields:
/1 In(?) gt — /1 In(1/s) ds
x 1+82 7 Jyx 14+1/s2 | s

1
1
1/x5 +1

Hence J is convergent and J = —1.



3. Let t € [0,1]. We know (from the sum of the terms of a geometric progression of ratio —t? # 1) that

zn: tzk zn: k ( tz)”ﬂ ! (_1)n+lt2n+2
prt Pt —(-2)  1+¢2 1+4¢2
Hence
1 n -1 n+1t2n+2
T =2 D ()72
14+t 1+t

k=0

4. Let k € N. The function ¢ +— t2*In(t) is continuous on (0, 1], hence the improper integral U}, is improper
at 0. Let X € (0,1). By an integration by parts,

1 £2k+1 t=1 1 42k+1 4
/ t2* In(t) dt = [ ln(t)} 7/ ——dt
¥ 2k + 1 iex  Jx 2k 1t
X 2k+1 1 42k
=— In(X) — / dt
2k+1 x 2k+1
2kl 2k+1 =1
. mn(X) — | —
2k + 1 2k+1)2],_y
X2k+1 1 X2k+1
=——In(X) - +
2k+1 (2k+1)2  (2k+1)?
1
—_—
x—0t  (2k +1)2
1
Hence the improper integral Uy converges and Uy = —W.
5. Let k € N. Observe that
vt e (0,1], 0> PRI | oz (t)
e — n .
s e T
Hence, by the comparison test we conclude that the improper integral
1 12k+42
t In(¢
/ () g
o 1+t
is convergent and that
1 12k+42 1
t In(¢ 1
0> / 7n()dt > / 2R 2 In(t)dt = —————.
o 1+1t2 0 (2k + 3)2
Hence | okia
0< / t In(t) at| < 1 .
o 1+ (2k + 3)2
Let n € N. By Question 3, we have
1 n (_1)n+1t2n+2
vt e (0,1 =) (DR
[’ ]’ 1_|_t2 Z( ) + 1_|_t2 ’
k=0
hence
In(t) - ke 2k (=)™ In(t)
vt e [0,1 = —1)"t“" In(¢
0.1), T = D +

Now since all the improper integrals

1 1 2n+2
t In(t
/ 2R In(t)dt, k€N,  and / ) g
0 o 1+¢2
are convergent, we conclude that

1 (_qynt1g2n+2
VneN, J= Z/ )t In(t )dt—i—/ SRV st U
0

14 ¢2




B zn:(_l)k-',—l 1 N /1 (_1)n+1t2n+2 ln(t) "
N —~ (2k+1)2 o 1+1¢2 '

Now, by the inequality obtained in the first part of this question (and the Squeeze Theorem),

1 (_1)n+1t2n+2 1n(t)

) 1412 dt = 0.
Hence,
= 1
= li L
J nﬁulloo — ( ) (Qk‘ =+ 1)2
Remembering that [ = —J yields
PR G O
= 1m .
n——+oo P (2k 4+ 1)2

Exercise 4.

1. To plot the unit ball of N we separate several cases. Let (x,y) € E such that >0, y > 0 and y < z. Then

(z,y) €B <= N((z,y)) <1 <= z+y+a2<1 < y<1-2u.

From this inequality we obtain the part of B that lies in {(:E, y) € E ’ z2>20,y>0,y< m}
Now we observe that
V(z,y) € E, N((y,2)) = N((z,9)),

from which we conclude that B is symmetric with respect to the line y = . At this point we obtain the part
of B that lies in the first quadrant {(z,y) € E | x>0, y>0}.

Now we observe that
V(z,y) € E, N((~z,)) = N((z,y)),
from which we conclude that B is symmetric with respect to the y-axis. At this point we obtain the part of
B that lies in the upper half plane {(z,y) € E | y > 0}.
Finally we observe that
V(z,y) € E, N((z,~y)) = N((z,y)),
from which we conclude that B is symmetric with respect to the z-axis. At this point we obtain B.
The ball B is represented in Figure 1.
. a) The vector space F is a finite-dimensional vector space, hence all the norms on E are equivalent. Hence
N and ||-||, are equivalent.
b) Let u € E such that u # Og.

e Since

SCIN | R
Volully ||, V5

we conclude that
U 1
()
V5 |ull, V5

and hence, by the first inclusion given, that

u —
€B
V5Jull,
and hence
u
N <1
<\/5IIUI|2>
and hence
N(u) < V5|[ul,.

We conclude that 8 = /5 fulfills the condition.



e Similarly,

hence u .
N €B
hence, by the second inclusion given,
U 1
v <2 (3)
hence
H <L
N(u)|ly ~ 2
hence )
lully < 5N (w).

We conclude that o = 1/2 fulfills the condition.

Exercise 5.

1. e Positive homogeneity: let P € E and A € R. Then
1 1
NAP) = [ [ =t)AP(t)|dt = |A] [ |(1 —t)P(t)|dt = |AIN(P).
0 0
e Triangle inequality: let P,@Q € E. Then (since 0 < 1),

N(P+Q):/O |(1—t)(P(t)+Q(t))|dt§/0 (I0=0P@®] + |1 - HQ()]) dt = N(P) + N(Q).

e Let P € E such that N(P) = 0. Then

/1|(1—t)P(t)|dt:O.
0

Since the function ¢+ |(1 — t)P(t)| is non-negative and continuous on [0, 1], we conclude that
vVt € [0,1], (1—1¢)P(t) =0.

Hence,
vt € [0,1), P(t) =0.

We notice that the polynomial P has an infinite number of roots, which can only happen for P = 0g.

Hence N is a norm on E.
2. e Distance between 1 and P;:

N(1—P)—/1|(1—t)t\dt—/1(t—t2)dt—1—1—1
L o T2 3 6

e Distance between 1 and Ps:
1 1 1
N(1 - P) :/ |(1—t)(1—t)|dt:/ (1—t)?dt = 3
0 0

Hence P, is closer to 1 than Ps.

3. a) Let n € N. Then

1 1
1 1 1
N(P, —0g) = 1—t)t"|dt = t" — "t dt = - = — 0
(Fo = 0z) /o‘( | /0( V= T s T DT ot

Hence the sequence (P,)n,en converges to 0 with respect to N.



b) Let n € N. Then
n
N(@n=0p) = N(nPn) = nN(F) = iy 57 O

Hence the sequence (Q)nen converges to 0g with respect to N.

a) Let n € N. Then

f(Pn)=1.
b) Since (P, )nen converges to Og for N, if f were continuous we would have
im | F(P) — £(0)] = 0.

Now for n € N, (since f(0g) = 0),

|f(Pa) = f(0p)| = |f(Pu)| = Pa(1) =1 — 1#0.

n—+00
We conclude that f is not continuous (with respect to V) at Og.

5. Notice that for n € N*, g(Q,) = nP! = n?P,_;. Since (Q,)nen converges to Og for the norm N, if g were
continuous at 0 we would have

im N (9(Qn) = g(0r)) = 0.

But for n € N* (since ¢(0g) = 0p),

TL2

_ 1#0.
n(n—l— 1) n:}w 7

N(Q(Qn) - g(OE)) = N(Q(Qn)) = N(n2Pn_1) = HZN(Pn—l) =
Hence ¢ is not continuous at Og.

Exercise 6. In this exercise we use the 2-norm on R? (all the norms on R? being equivalent, we can use the
one we want).

1. Case a+ > 2: let (z,y) € U. Then, remembering the following useful inequalities

[z <[z 9)ll,  and  Jy[ <|[(z,9)l,

we obtain:
a0 = L MGy oo
’ [ ll, = @l a0
since « + 8 —2 > 0. Hence lim f(x,y)=0.
(@,y)—0

2. e Case a+ = 2: we show that the directional limits of f are not equal: Let ¢ € R*. Then
|t|a+5

+5-2
o7 | |07

f(tvt) =

Hl
t—0 2’

_1
2
and

f(t,0)=0 P 0.
Since (t, t) (0 0) and (¢, O) (0 0), and since both limits we computed aren’t equal, we conclude

that ( %nn( : f (z,y) doesn’t ex1st (composition of limits theorem, together with the uniqueness of
z,y)—(0,0
limits property).
e Case o+ f < 2: for t € R*,
Ft,t) =t — foc.
=0

Hence, since (¢, t) (0 0), we conclude that  lim  f(z,y) doesn’t exist (in R).
(z,9)—(0,0)



Figure 1. Unit ball B of Exercise 4. We have also represented (in dashed) the boundaries of B(1/2)
and Bg(l/\/g), and the straight line of equation y = x.



