
SCAN 2 — Solution of Math Test #1
Romaric Pujol, romaric.pujol@insa-lyon.fr

October 22, 2018

Exercise 1. The statement is false: define

f : [1,+∞) −→ R

x 7−→ 1

x
.

Clearly f is continuous and lim
x→+∞

f(x) = 0. Yet it is well-known that the improper integral

∫ +∞

1

f(x) dx

diverges (Riemann integral at +∞ with α = 1 ≤ 1).

Exercise 2.

1. The function x 7→ e−
√
x2+x is continuous on [1,+∞) hence the improper integral (1) is improper at +∞.

Now observe that
∀x ∈ [1,+∞), x2 + x ≥ x2

hence
∀x ∈ [1,+∞), −

√

x2 + x ≤ −x

hence
∀x ∈ [1,+∞), 0 ≤ e−

√
x2+x ≤ e−x.

Now we know that the improper integral
∫ +∞

1

e−x dx

is convergent hence, by the comparison test, the improper integral (1) is convergent.

2. The function

t 7→ 1− cos(t)

t2
e−t

is continuous on (0,+∞) hence the improper integral (2) is improper at 0+ and at +∞.

• Convergence at 0+: by the well-known equivalents,

1− cos(t)

t2
e−t ∼

x→0+

1

2
× 1 =

1

2
−→
x→0+

1

2
.

Hence the improper integral (2) is falsely improper at 0+ hence the improper integral (2) converges
at 0+.

• Convergence at +∞: observe that

∀t ∈ [1,+∞), 0 ≤ 1− cos(t)

t2
e−t ≤ 2

t2
.

We know that the improper integral
∫ +∞

1

2

t2
dt

converges at +∞ (Riemann at +∞ with α = 2 > 1) hence, by the comparison test, the improper
integral (2) converges at +∞.

We hence conclude that the improper integral (2) is convergent.



3. Let x ∈ R. The function

t 7→ tx

1 + t

is continuous on (0, 1] (this interval must be opened at 0 to take care of the case x < 0), hence the improper
integral (3) is improper at 0+. Now,

tx

1 + t
∼

t→0+
tx =

1

t−x
> 0,

and we know, by Riemann at +∞, that the improper integral

∫ 1

0

dt

t−x

converges if and only if α = −x < 1. Hence, by the equivalent test, the improper integral (3) converges if
and only if x > −1.

Exercise 3.

1. The function

t 7→ ln(t)

1 + t2

is continuous on [1,+∞) hence the improper integral I is improper at +∞. Now,

t3/2
ln(t)

1 + t2
∼

t→+∞
t3/2

ln(t)

t2
=

ln(t)√
t

−→
t→+∞

0.

Hence there exists A > 1 such that

∀t ∈ [A,+∞), t3/2
ln(t)

1 + t2
≤ 1.

Then

∀t ∈ [A,+∞), 0 ≤ ln(t)

1 + t2
≤ 1

t3/2
.

Now we know that the improper integral
∫ +∞

A

dt

t3/2

is convergent at +∞ (Riemann at +∞ with α = 3/2 > 1) hence, by the comparison test, the improper
integral I converges at +∞.

2. The function

t 7→ ln(t)

1 + t2

is continuous on (0, 1] hence the improper integral J is improper at 0+. Let X ∈ (0, 1). Then, using the
substitution s = 1/t yields:

∫ 1

X

ln(t)

1 + t2
dt =

∫ 1

1/X

ln(1/s)

1 + 1/s2

(

−ds

s2

)

=

∫ 1

1/X

− ln(s)

s2 + 1
(−ds)

=

∫ 1

1/X

ln(s)

s2 + 1
ds

= −
∫ 1/X

1

ln(s)

s2 + 1
ds

−→
X→0+

∫ +∞

1

ln(s)

1 + s2
ds = −I.

Hence J is convergent and J = −I.



3. Let t ∈ [0, 1]. We know (from the sum of the terms of a geometric progression of ratio −t2 6= 1) that

n
∑

k=0

(−1)kt2k =

n
∑

k=0

(

−t2
)k

=
1−

(

−t2
)n+1

1−
(

−t2
) =

1

1 + t2
− (−1)n+1t2n+2

1 + t2
.

Hence
1

1 + t2
=

n
∑

k=0

(−1)kt2k +
(−1)n+1t2n+2

1 + t2
.

4. Let k ∈ N. The function t 7→ t2k ln(t) is continuous on (0, 1], hence the improper integral Uk is improper
at 0+. Let X ∈ (0, 1). By an integration by parts,

∫ 1

X

t2k ln(t) dt =

[

t2k+1

2k + 1
ln(t)

]t=1

t=X

−
∫ 1

X

t2k+1

2k + 1

1

t
dt

= −X2k+1

2k + 1
ln(X)−

∫ 1

X

t2k

2k + 1
dt

= −X2k+1

2k + 1
ln(X)−

[

t2k+1

(2k + 1)2

]t=1

t=X

= −X2k+1

2k + 1
ln(X)− 1

(2k + 1)2
+

X2k+1

(2k + 1)2

−→
X→0+

− 1

(2k + 1)2
.

Hence the improper integral Uk converges and Uk = − 1

(2k + 1)2
.

5. Let k ∈ N. Observe that

∀t ∈ (0, 1], 0 ≥ t2k+2 ln(t)

1 + t2
≥ t2k+2 ln(t).

Hence, by the comparison test we conclude that the improper integral

∫ 1

0

t2k+2 ln(t)

1 + t2
dt

is convergent and that

0 ≥
∫ 1

0

t2k+2 ln(t)

1 + t2
dt ≥

∫ 1

0

t2k+2 ln(t) dt = − 1

(2k + 3)2
.

Hence

0 ≤
∣

∣

∣

∣

∫ 1

0

t2k+2 ln(t)

1 + t2
dt

∣

∣

∣

∣

≤ 1

(2k + 3)2
.

Let n ∈ N. By Question 3, we have

∀t ∈ [0, 1],
1

1 + t2
=

n
∑

k=0

(−1)kt2k +
(−1)n+1t2n+2

1 + t2
,

hence

∀t ∈ [0, 1],
ln(t)

1 + t2
=

n
∑

k=0

(−1)kt2k ln(t) +
(−1)n+1t2n+2 ln(t)

1 + t2
.

Now since all the improper integrals

∫ 1

0

t2k ln(t) dt, k ∈ N, and

∫ 1

0

t2n+2 ln(t)

1 + t2
dt

are convergent, we conclude that

∀n ∈ N, J =

n
∑

k=0

∫ 1

0

(−1)kt2k ln(t) dt +

∫ 1

0

(−1)n+1t2n+2 ln(t)

1 + t2
dt



=

n
∑

k=0

(−1)k+1 1

(2k + 1)2
+

∫ 1

0

(−1)n+1t2n+2 ln(t)

1 + t2
dt.

Now, by the inequality obtained in the first part of this question (and the Squeeze Theorem),

lim
n→+∞

∫ 1

0

(−1)n+1t2n+2 ln(t)

1 + t2
dt = 0.

Hence,

J = lim
n→+∞

n
∑

k=0

(−1)k+1 1

(2k + 1)2
.

Remembering that I = −J yields

I = lim
n→+∞

n
∑

k=0

(−1)k

(2k + 1)2
.

Exercise 4.

1. To plot the unit ball of N we separate several cases. Let (x, y) ∈ E such that x ≥ 0, y ≥ 0 and y ≤ x. Then

(x, y) ∈ B ⇐⇒ N
(

(x, y)
)

≤ 1 ⇐⇒ x+ y + x ≤ 1 ⇐⇒ y ≤ 1− 2x.

From this inequality we obtain the part of B that lies in
{

(x, y) ∈ E
∣

∣ x ≥ 0, y ≥ 0, y ≤ x
}

.

Now we observe that
∀(x, y) ∈ E, N

(

(y, x)
)

= N
(

(x, y)
)

,

from which we conclude that B is symmetric with respect to the line y = x. At this point we obtain the part
of B that lies in the first quadrant

{

(x, y) ∈ E
∣

∣ x ≥ 0, y ≥ 0
}

.

Now we observe that
∀(x, y) ∈ E, N

(

(−x, y)
)

= N
(

(x, y)
)

,

from which we conclude that B is symmetric with respect to the y-axis. At this point we obtain the part of
B that lies in the upper half plane

{

(x, y) ∈ E
∣

∣ y ≥ 0
}

.

Finally we observe that
∀(x, y) ∈ E, N

(

(x,−y)
)

= N
(

(x, y)
)

,

from which we conclude that B is symmetric with respect to the x-axis. At this point we obtain B.

The ball B is represented in Figure 1.

2. a) The vector space E is a finite-dimensional vector space, hence all the norms on E are equivalent. Hence
N and ‖·‖2 are equivalent.

b) Let u ∈ E such that u 6= 0E .

• Since
∥

∥

∥

∥

∥

u√
5‖u‖2

∥

∥

∥

∥

∥

2

=
1√
5

we conclude that
u√

5‖u‖2
∈ B2

(

1√
5

)

,

and hence, by the first inclusion given, that

u√
5‖u‖2

∈ B

and hence

N

(

u√
5‖u‖2

)

≤ 1

and hence
N(u) ≤

√
5‖u‖2.

We conclude that β =
√
5 fulfills the condition.



• Similarly,

N

(

u

N(u)

)

= 1

hence
u

N(u)
∈ B

hence, by the second inclusion given,

u

N(u)
∈ B2

(

1

2

)

hence
∥

∥

∥

∥

u

N(u)

∥

∥

∥

∥

2

≤ 1

2
,

hence

‖u‖2 ≤ 1

2
N(u).

We conclude that α = 1/2 fulfills the condition.

Exercise 5.

1. • Positive homogeneity: let P ∈ E and λ ∈ R. Then

N(λP ) =

∫ 1

0

∣

∣(1− t)λP (t)
∣

∣ dt = |λ|
∫ 1

0

∣

∣(1− t)P (t)
∣

∣ dt = |λ|N(P ).

• Triangle inequality: let P,Q ∈ E. Then (since 0 < 1),

N(P +Q) =

∫ 1

0

∣

∣(1− t)
(

P (t) +Q(t)
)∣

∣ dt ≤
∫ 1

0

(

∣

∣(1− t)P (t)
∣

∣+
∣

∣(1− t)Q(t)
∣

∣

)

dt = N(P ) +N(Q).

• Let P ∈ E such that N(P ) = 0. Then

∫ 1

0

∣

∣(1− t)P (t)
∣

∣ dt = 0.

Since the function t 7→
∣

∣(1− t)P (t)
∣

∣ is non-negative and continuous on [0, 1], we conclude that

∀t ∈ [0, 1], (1− t)P (t) = 0.

Hence,
∀t ∈ [0, 1), P (t) = 0.

We notice that the polynomial P has an infinite number of roots, which can only happen for P = 0E .

Hence N is a norm on E.

2. • Distance between 1 and P1:

N(1− P1) =

∫ 1

0

∣

∣(1− t)t
∣

∣ dt =

∫ 1

0

(

t− t2
)

dt =
1

2
− 1

3
=

1

6
.

• Distance between 1 and P2:

N(1− P2) =

∫ 1

0

∣

∣(1− t)(1− t)
∣

∣ dt =

∫ 1

0

(1− t)2 dt =
1

3
.

Hence P1 is closer to 1 than P2.

3. a) Let n ∈ N. Then

N(Pn − 0E) =

∫ 1

0

∣

∣(1− t)tn
∣

∣ dt =

∫ 1

0

(

tn − tn+1
)

dt =
1

n+ 1
− 1

n+ 2
=

1

(n+ 1)(n+ 2)
−→

n→+∞
0.

Hence the sequence (Pn)n∈N converges to 0E with respect to N .



b) Let n ∈ N. Then

N(Qn − 0E) = N(nPn) = nN(Pn) =
n

(n+ 1)(n+ 2)
−→

n→+∞
0.

Hence the sequence (Qn)n∈N converges to 0E with respect to N .

4. a) Let n ∈ N. Then
f(Pn) = 1.

b) Since (Pn)n∈N converges to 0E for N , if f were continuous we would have

lim
n→+∞

∣

∣f(Pn)− f(0E)
∣

∣ = 0.

Now for n ∈ N, (since f(0E) = 0),

∣

∣f(Pn)− f(0E)
∣

∣ =
∣

∣f(Pn)
∣

∣ = Pn(1) = 1 −→
n→+∞

1 6= 0.

We conclude that f is not continuous (with respect to N) at 0E .

5. Notice that for n ∈ N
∗, g(Qn) = nP ′

n = n2Pn−1. Since (Qn)n∈N converges to 0E for the norm N , if g were
continuous at 0E we would have

lim
n→+∞

N
(

g(Qn)− g(0E)
)

= 0.

But for n ∈ N
∗, (since g(0E) = 0E),

N
(

g(Qn)− g(0E)
)

= N
(

g(Qn)
)

= N
(

n2Pn−1

)

= n2N(Pn−1) =
n2

n(n+ 1)
−→

n→+∞
1 6= 0.

Hence g is not continuous at 0E .

Exercise 6. In this exercise we use the 2-norm on R
2 (all the norms on R

2 being equivalent, we can use the
one we want).

1. Case α+ β > 2: let (x, y) ∈ U . Then, remembering the following useful inequalities

|x| ≤ ‖(x, y)‖2 and |y| ≤ ‖(x, y)‖2

we obtain:
∣

∣f(x, y)− 0
∣

∣ =
|x|α|y|β
∥

∥(x, y)
∥

∥

2

≤
∥

∥(x, y)
∥

∥

α+β

2
∥

∥(x, y)
∥

∥

2

=
∥

∥(x, y)
∥

∥

α+β−2

2
−→

‖(x,y)‖
2
→0

0,

since α+ β − 2 > 0. Hence lim
(x,y)→0

f(x, y) = 0.

2. • Case α+ β = 2: we show that the directional limits of f are not equal: Let t ∈ R
∗. Then

f(t, t) =
|t|α+β

2t2
=

1

2
|t|α+β−2

=
1

2
−→
t→0

1

2
,

and
f(t, 0) = 0 −→

t→0
0.

Since (t, t) −→
t→0

(0, 0) and (t, 0) −→
t→0

(0, 0), and since both limits we computed aren’t equal, we conclude

that lim
(x,y)→(0,0)

f(x, y) doesn’t exist (composition of limits theorem, together with the uniqueness of

limits property).

• Case α+ β < 2: for t ∈ R
∗,

f(t, t) = |t|α+β−2 −→
t→0

+∞.

Hence, since (t, t) −→
t→0

(0, 0), we conclude that lim
(x,y)→(0,0)

f(x, y) doesn’t exist (in R).
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Figure 1. Unit ball B of Exercise 4. We have also represented (in dashed) the boundaries of B2(1/2)

and B2

(

1/
√
5
)

, and the straight line of equation y = x.


