Exercise 1. The statement is false: define

$$
\begin{aligned}
f:[1,+\infty) & \longrightarrow \mathbb{R} \\
x & \longmapsto \frac{1}{x} .
\end{aligned}
$$

Clearly f is continuous and $\lim _{x \rightarrow+\infty} f(x)=0$. Yet it is well-known that the improper integral

$$
\int_{1}^{+\infty} f(x) \mathrm{d} x
$$

diverges (Riemann integral at $+\infty$ with $\alpha=1 \leq 1$).

Exercise 2.

1. The function $x \mapsto \mathrm{e}^{-\sqrt{x^{2}+x}}$ is continuous on $[1,+\infty)$ hence the improper integral (1) is improper at $+\infty$. Now observe that

$$
\forall x \in[1,+\infty), x^{2}+x \geq x^{2}
$$

hence

$$
\forall x \in[1,+\infty),-\sqrt{x^{2}+x} \leq-x
$$

hence

$$
\forall x \in[1,+\infty), 0 \leq \mathrm{e}^{-\sqrt{x^{2}+x}} \leq \mathrm{e}^{-x}
$$

Now we know that the improper integral

$$
\int_{1}^{+\infty} \mathrm{e}^{-x} \mathrm{~d} x
$$

is convergent hence, by the comparison test, the improper integral (1) is convergent.
2. The function

$$
t \mapsto \frac{1-\cos (t)}{t^{2}} \mathrm{e}^{-t}
$$

is continuous on $(0,+\infty)$ hence the improper integral (2) is improper at 0^{+}and at $+\infty$.

- Convergence at 0^{+}: by the well-known equivalents,

$$
\frac{1-\cos (t)}{t^{2}} \mathrm{e}^{-t} \underset{x \rightarrow 0^{+}}{\sim} \frac{1}{2} \times 1=\frac{1}{2} \underset{x \rightarrow 0^{+}}{\longrightarrow} \frac{1}{2} .
$$

Hence the improper integral (2) is falsely improper at 0^{+}hence the improper integral (2) converges at 0^{+}.

- Convergence at $+\infty$: observe that

$$
\forall t \in[1,+\infty), 0 \leq \frac{1-\cos (t)}{t^{2}} \mathrm{e}^{-t} \leq \frac{2}{t^{2}}
$$

We know that the improper integral

$$
\int_{1}^{+\infty} \frac{2}{t^{2}} \mathrm{~d} t
$$

converges at $+\infty$ (Riemann at $+\infty$ with $\alpha=2>1$) hence, by the comparison test, the improper integral (2) converges at $+\infty$.

We hence conclude that the improper integral (2) is convergent.
3. Let $x \in \mathbb{R}$. The function

$$
t \mapsto \frac{t^{x}}{1+t}
$$

is continuous on $(0,1]$ (this interval must be opened at 0 to take care of the case $x<0$), hence the improper integral (3) is improper at 0^{+}. Now,

$$
\frac{t^{x}}{1+t} \underset{t \rightarrow 0^{+}}{\sim} t^{x}=\frac{1}{t^{-x}}>0
$$

and we know, by Riemann at $+\infty$, that the improper integral

$$
\int_{0}^{1} \frac{\mathrm{~d} t}{t^{-x}}
$$

converges if and only if $\alpha=-x<1$. Hence, by the equivalent test, the improper integral (3) converges if and only if $x>-1$.

Exercise 3.

1. The function

$$
t \mapsto \frac{\ln (t)}{1+t^{2}}
$$

is continuous on $[1,+\infty)$ hence the improper integral I is improper at $+\infty$. Now,

$$
t^{3 / 2} \frac{\ln (t)}{1+t^{2}} \underset{t \rightarrow+\infty}{\sim} t^{3 / 2} \frac{\ln (t)}{t^{2}}=\frac{\ln (t)}{\sqrt{t}} \underset{t \rightarrow+\infty}{\longrightarrow} 0
$$

Hence there exists $A>1$ such that

$$
\forall t \in[A,+\infty), t^{3 / 2} \frac{\ln (t)}{1+t^{2}} \leq 1
$$

Then

$$
\forall t \in[A,+\infty), 0 \leq \frac{\ln (t)}{1+t^{2}} \leq \frac{1}{t^{3 / 2}}
$$

Now we know that the improper integral

$$
\int_{A}^{+\infty} \frac{\mathrm{d} t}{t^{3 / 2}}
$$

is convergent at $+\infty$ (Riemann at $+\infty$ with $\alpha=3 / 2>1$) hence, by the comparison test, the improper integral I converges at $+\infty$.
2. The function

$$
t \mapsto \frac{\ln (t)}{1+t^{2}}
$$

is continuous on $(0,1]$ hence the improper integral J is improper at 0^{+}. Let $X \in(0,1)$. Then, using the substitution $s=1 / t$ yields:

$$
\begin{aligned}
\int_{X}^{1} \frac{\ln (t)}{1+t^{2}} \mathrm{~d} t & =\int_{1 / X}^{1} \frac{\ln (1 / s)}{1+1 / s^{2}}\left(-\frac{\mathrm{d} s}{s^{2}}\right) \\
& =\int_{1 / X}^{1} \frac{-\ln (s)}{s^{2}+1}(-\mathrm{d} s) \\
& =\int_{1 / X}^{1} \frac{\ln (s)}{s^{2}+1} \mathrm{~d} s \\
& =-\int_{1}^{1 / X} \frac{\ln (s)}{s^{2}+1} \mathrm{~d} s \\
& \xrightarrow[X \rightarrow 0^{+}]{\longrightarrow} \int_{1}^{+\infty} \frac{\ln (s)}{1+s^{2}} \mathrm{~d} s=-I
\end{aligned}
$$

Hence J is convergent and $J=-I$.
3. Let $t \in[0,1]$. We know (from the sum of the terms of a geometric progression of ratio $-t^{2} \neq 1$) that

$$
\sum_{k=0}^{n}(-1)^{k} t^{2 k}=\sum_{k=0}^{n}\left(-t^{2}\right)^{k}=\frac{1-\left(-t^{2}\right)^{n+1}}{1-\left(-t^{2}\right)}=\frac{1}{1+t^{2}}-\frac{(-1)^{n+1} t^{2 n+2}}{1+t^{2}}
$$

Hence

$$
\frac{1}{1+t^{2}}=\sum_{k=0}^{n}(-1)^{k} t^{2 k}+\frac{(-1)^{n+1} t^{2 n+2}}{1+t^{2}}
$$

4. Let $k \in \mathbb{N}$. The function $t \mapsto t^{2 k} \ln (t)$ is continuous on $(0,1]$, hence the improper integral U_{k} is improper at 0^{+}. Let $X \in(0,1)$. By an integration by parts,

$$
\begin{aligned}
\int_{X}^{1} t^{2 k} \ln (t) \mathrm{d} t & =\left[\frac{t^{2 k+1}}{2 k+1} \ln (t)\right]_{t=X}^{t=1}-\int_{X}^{1} \frac{t^{2 k+1}}{2 k+1} \frac{1}{t} \mathrm{~d} t \\
& =-\frac{X^{2 k+1}}{2 k+1} \ln (X)-\int_{X}^{1} \frac{t^{2 k}}{2 k+1} \mathrm{~d} t \\
& =-\frac{X^{2 k+1}}{2 k+1} \ln (X)-\left[\frac{t^{2 k+1}}{(2 k+1)^{2}}\right]_{t=X}^{t=1} \\
& =-\frac{X^{2 k+1}}{2 k+1} \ln (X)-\frac{1}{(2 k+1)^{2}}+\frac{X^{2 k+1}}{(2 k+1)^{2}} \\
& \underset{X \rightarrow 0^{+}}{\longrightarrow}-\frac{1}{(2 k+1)^{2}}
\end{aligned}
$$

Hence the improper integral U_{k} converges and $U_{k}=-\frac{1}{(2 k+1)^{2}}$.
5. Let $k \in \mathbb{N}$. Observe that

$$
\forall t \in(0,1], 0 \geq \frac{t^{2 k+2} \ln (t)}{1+t^{2}} \geq t^{2 k+2} \ln (t)
$$

Hence, by the comparison test we conclude that the improper integral

$$
\int_{0}^{1} \frac{t^{2 k+2} \ln (t)}{1+t^{2}} \mathrm{~d} t
$$

is convergent and that

$$
0 \geq \int_{0}^{1} \frac{t^{2 k+2} \ln (t)}{1+t^{2}} \mathrm{~d} t \geq \int_{0}^{1} t^{2 k+2} \ln (t) \mathrm{d} t=-\frac{1}{(2 k+3)^{2}}
$$

Hence

$$
0 \leq\left|\int_{0}^{1} \frac{t^{2 k+2} \ln (t)}{1+t^{2}} \mathrm{~d} t\right| \leq \frac{1}{(2 k+3)^{2}}
$$

Let $n \in \mathbb{N}$. By Question 3, we have

$$
\forall t \in[0,1], \frac{1}{1+t^{2}}=\sum_{k=0}^{n}(-1)^{k} t^{2 k}+\frac{(-1)^{n+1} t^{2 n+2}}{1+t^{2}}
$$

hence

$$
\forall t \in[0,1], \frac{\ln (t)}{1+t^{2}}=\sum_{k=0}^{n}(-1)^{k} t^{2 k} \ln (t)+\frac{(-1)^{n+1} t^{2 n+2} \ln (t)}{1+t^{2}}
$$

Now since all the improper integrals

$$
\int_{0}^{1} t^{2 k} \ln (t) \mathrm{d} t, k \in \mathbb{N}, \quad \text { and } \quad \int_{0}^{1} \frac{t^{2 n+2} \ln (t)}{1+t^{2}} \mathrm{~d} t
$$

are convergent, we conclude that

$$
\forall n \in \mathbb{N}, \quad J=\sum_{k=0}^{n} \int_{0}^{1}(-1)^{k} t^{2 k} \ln (t) \mathrm{d} t+\int_{0}^{1} \frac{(-1)^{n+1} t^{2 n+2} \ln (t)}{1+t^{2}} \mathrm{~d} t
$$

$$
=\sum_{k=0}^{n}(-1)^{k+1} \frac{1}{(2 k+1)^{2}}+\int_{0}^{1} \frac{(-1)^{n+1} t^{2 n+2} \ln (t)}{1+t^{2}} \mathrm{~d} t
$$

Now, by the inequality obtained in the first part of this question (and the Squeeze Theorem),

$$
\lim _{n \rightarrow+\infty} \int_{0}^{1} \frac{(-1)^{n+1} t^{2 n+2} \ln (t)}{1+t^{2}} \mathrm{~d} t=0
$$

Hence,

$$
J=\lim _{n \rightarrow+\infty} \sum_{k=0}^{n}(-1)^{k+1} \frac{1}{(2 k+1)^{2}}
$$

Remembering that $I=-J$ yields

$$
I=\lim _{n \rightarrow+\infty} \sum_{k=0}^{n} \frac{(-1)^{k}}{(2 k+1)^{2}}
$$

Exercise 4.

1. To plot the unit ball of N we separate several cases. Let $(x, y) \in E$ such that $x \geq 0, y \geq 0$ and $y \leq x$. Then

$$
(x, y) \in \bar{B} \Longleftrightarrow N((x, y)) \leq 1 \Longleftrightarrow x+y+x \leq 1 \Longleftrightarrow y \leq 1-2 x
$$

From this inequality we obtain the part of \bar{B} that lies in $\{(x, y) \in E \mid x \geq 0, y \geq 0, y \leq x\}$.
Now we observe that

$$
\forall(x, y) \in E, N((y, x))=N((x, y))
$$

from which we conclude that \bar{B} is symmetric with respect to the line $y=x$. At this point we obtain the part of \bar{B} that lies in the first quadrant $\{(x, y) \in E \mid x \geq 0, y \geq 0\}$.
Now we observe that

$$
\forall(x, y) \in E, N((-x, y))=N((x, y))
$$

from which we conclude that \bar{B} is symmetric with respect to the y-axis. At this point we obtain the part of \bar{B} that lies in the upper half plane $\{(x, y) \in E \mid y \geq 0\}$.
Finally we observe that

$$
\forall(x, y) \in E, N((x,-y))=N((x, y))
$$

from which we conclude that \bar{B} is symmetric with respect to the x-axis. At this point we obtain \bar{B}.
The ball \bar{B} is represented in Figure 1.
2. a) The vector space E is a finite-dimensional vector space, hence all the norms on E are equivalent. Hence N and $\|\cdot\|_{2}$ are equivalent.
b) Let $u \in E$ such that $u \neq 0_{E}$.

- Since

$$
\left\|\frac{u}{\sqrt{5}\|u\|_{2}}\right\|_{2}=\frac{1}{\sqrt{5}}
$$

we conclude that

$$
\frac{u}{\sqrt{5}\|u\|_{2}} \in \overline{B_{2}\left(\frac{1}{\sqrt{5}}\right)}
$$

and hence, by the first inclusion given, that

$$
\frac{u}{\sqrt{5}\|u\|_{2}} \in \bar{B}
$$

and hence

$$
N\left(\frac{u}{\sqrt{5}\|u\|_{2}}\right) \leq 1
$$

and hence

$$
N(u) \leq \sqrt{5}\|u\|_{2} .
$$

We conclude that $\beta=\sqrt{5}$ fulfills the condition.

- Similarly,

$$
N\left(\frac{u}{N(u)}\right)=1
$$

hence

$$
\frac{u}{N(u)} \in \bar{B}
$$

hence, by the second inclusion given,

$$
\frac{u}{N(u)} \in \overline{B_{2}\left(\frac{1}{2}\right)}
$$

hence

$$
\left\|\frac{u}{N(u)}\right\|_{2} \leq \frac{1}{2}
$$

hence

$$
\|u\|_{2} \leq \frac{1}{2} N(u)
$$

We conclude that $\alpha=1 / 2$ fulfills the condition.

Exercise 5.

1. - Positive homogeneity: let $P \in E$ and $\lambda \in \mathbb{R}$. Then

$$
N(\lambda P)=\int_{0}^{1}|(1-t) \lambda P(t)| \mathrm{d} t=|\lambda| \int_{0}^{1}|(1-t) P(t)| \mathrm{d} t=|\lambda| N(P) .
$$

- Triangle inequality: let $P, Q \in E$. Then (since $0<1$),

$$
N(P+Q)=\int_{0}^{1}|(1-t)(P(t)+Q(t))| \mathrm{d} t \leq \int_{0}^{1}(|(1-t) P(t)|+|(1-t) Q(t)|) \mathrm{d} t=N(P)+N(Q)
$$

- Let $P \in E$ such that $N(P)=0$. Then

$$
\int_{0}^{1}|(1-t) P(t)| \mathrm{d} t=0
$$

Since the function $t \mapsto|(1-t) P(t)|$ is non-negative and continuous on $[0,1]$, we conclude that

$$
\forall t \in[0,1],(1-t) P(t)=0
$$

Hence,

$$
\forall t \in[0,1), P(t)=0
$$

We notice that the polynomial P has an infinite number of roots, which can only happen for $P=0_{E}$. Hence N is a norm on E.
2. \quad Distance between 1 and P_{1} :

$$
N\left(1-P_{1}\right)=\int_{0}^{1}|(1-t) t| \mathrm{d} t=\int_{0}^{1}\left(t-t^{2}\right) \mathrm{d} t=\frac{1}{2}-\frac{1}{3}=\frac{1}{6} .
$$

- Distance between 1 and P_{2} :

$$
N\left(1-P_{2}\right)=\int_{0}^{1}|(1-t)(1-t)| \mathrm{d} t=\int_{0}^{1}(1-t)^{2} \mathrm{~d} t=\frac{1}{3} .
$$

Hence P_{1} is closer to 1 than P_{2}.
3. a) Let $n \in \mathbb{N}$. Then

$$
N\left(P_{n}-0_{E}\right)=\int_{0}^{1}\left|(1-t) t^{n}\right| \mathrm{d} t=\int_{0}^{1}\left(t^{n}-t^{n+1}\right) \mathrm{d} t=\frac{1}{n+1}-\frac{1}{n+2}=\frac{1}{(n+1)(n+2)} \underset{n \rightarrow+\infty}{\longrightarrow} 0
$$

Hence the sequence $\left(P_{n}\right)_{n \in \mathbb{N}}$ converges to 0_{E} with respect to N.
b) Let $n \in \mathbb{N}$. Then

$$
N\left(Q_{n}-0_{E}\right)=N\left(n P_{n}\right)=n N\left(P_{n}\right)=\frac{n}{(n+1)(n+2)} \underset{n \rightarrow+\infty}{\longrightarrow} 0
$$

Hence the sequence $\left(Q_{n}\right)_{n \in \mathbb{N}}$ converges to 0_{E} with respect to N.
4. a) Let $n \in \mathbb{N}$. Then

$$
f\left(P_{n}\right)=1
$$

b) Since $\left(P_{n}\right)_{n \in \mathbb{N}}$ converges to 0_{E} for N, if f were continuous we would have

$$
\lim _{n \rightarrow+\infty}\left|f\left(P_{n}\right)-f\left(0_{E}\right)\right|=0
$$

Now for $n \in \mathbb{N}$, (since $\left.f\left(0_{E}\right)=0\right)$,

$$
\left|f\left(P_{n}\right)-f\left(0_{E}\right)\right|=\left|f\left(P_{n}\right)\right|=P_{n}(1)=1 \underset{n \rightarrow+\infty}{\longrightarrow} 1 \neq 0
$$

We conclude that f is not continuous (with respect to N) at 0_{E}.
5. Notice that for $n \in \mathbb{N}^{*}, g\left(Q_{n}\right)=n P_{n}^{\prime}=n^{2} P_{n-1}$. Since $\left(Q_{n}\right)_{n \in \mathbb{N}}$ converges to 0_{E} for the norm N, if g were continuous at 0_{E} we would have

$$
\lim _{n \rightarrow+\infty} N\left(g\left(Q_{n}\right)-g\left(0_{E}\right)\right)=0
$$

But for $n \in \mathbb{N}^{*}$, (since $g\left(0_{E}\right)=0_{E}$),

$$
N\left(g\left(Q_{n}\right)-g\left(0_{E}\right)\right)=N\left(g\left(Q_{n}\right)\right)=N\left(n^{2} P_{n-1}\right)=n^{2} N\left(P_{n-1}\right)=\frac{n^{2}}{n(n+1)} \underset{n \rightarrow+\infty}{\longrightarrow} 1 \neq 0
$$

Hence g is not continuous at 0_{E}.
Exercise 6. In this exercise we use the 2-norm on \mathbb{R}^{2} (all the norms on \mathbb{R}^{2} being equivalent, we can use the one we want).

1. Case $\alpha+\beta>2$: let $(x, y) \in U$. Then, remembering the following useful inequalities

$$
|x| \leq\|(x, y)\|_{2} \quad \text { and } \quad|y| \leq\|(x, y)\|_{2}
$$

we obtain:

$$
|f(x, y)-0|=\frac{|x|^{\alpha}|y|^{\beta}}{\|(x, y)\|_{2}} \leq \frac{\|(x, y)\|_{2}^{\alpha+\beta}}{\|(x, y)\|_{2}}=\|(x, y)\|_{2}^{\alpha+\beta-2} \underset{\|(x, y)\|_{2} \rightarrow 0}{\longrightarrow} 0
$$

since $\alpha+\beta-2>0$. Hence $\lim _{(x, y) \rightarrow 0} f(x, y)=0$.
2. - Case $\alpha+\beta=2$: we show that the directional limits of f are not equal: Let $t \in \mathbb{R}^{*}$. Then

$$
f(t, t)=\frac{|t|^{\alpha+\beta}}{2 t^{2}}=\frac{1}{2}|t|^{\alpha+\beta-2}=\frac{1}{2} \underset{t \rightarrow 0}{\longrightarrow} \frac{1}{2}
$$

and

$$
f(t, 0)=0 \underset{t \rightarrow 0}{\longrightarrow} 0
$$

Since $(t, t) \underset{t \rightarrow 0}{\longrightarrow}(0,0)$ and $(t, 0) \underset{t \rightarrow 0}{\longrightarrow}(0,0)$, and since both limits we computed aren't equal, we conclude that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ doesn't exist (composition of limits theorem, together with the uniqueness of limits property).

- Case $\alpha+\beta<2$: for $t \in \mathbb{R}^{*}$,

$$
f(t, t)=|t|^{\alpha+\beta-2} \underset{t \rightarrow 0}{\longrightarrow}+\infty
$$

Hence, since $(t, t) \underset{t \rightarrow 0}{\longrightarrow}(0,0)$, we conclude that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ doesn't exist (in \mathbb{R}).

Figure 1. Unit ball \bar{B} of Exercise 4. We have also represented (in dashed) the boundaries of $\overline{B_{2}(1 / 2)}$ and $\overline{B_{2}(1 / \sqrt{5})}$, and the straight line of equation $y=x$.

