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1. The function
p: R —R
(,y) — y
is obviously continuous, and (0, +00) is an open subset of R, hence pl~!! ((O, +oo)) is an open subset of R2.
The conclusion follows by observing that D = pl=11((0, +0)).
2. a) Let y € R%. Then

o -yl -y y
yoV= y+Y RS Y+

hence

y
ly =yl =ly—1 <ly—1].
Vyl=| \y+\/§ |

b) Let (z,y) € D. Then
ly =Vl <ly—1] < |[(z,y = 1)||,,
since we know that for all (X,Y) € R, |Y| < ||(X,Y)H2.
c) Let (x,y) € D. Then:

[@w)] = |y = viln(a? + = )?)|
= |y = vil (| @y = ;)]

< e =Dy -0IE)| =

l(z,y—=1)[l,—0

hence f is continuous at (0, 1).

3. Let (z,y) € D\ {(0,1)}.

a)
onf(,y) = m
Oaf(e.y) = (1 =) (e + (y— 1?) + =Vl —1)

2

b) The first-order partial derivatives of f are clearly continuous on D \ {(O, 1)} (as they are obtained by
elementary operations and continuous functions only), hence f is of class C* on D\ {(O, 1)}

c) First evaluate f and its first order partial derivatives at (2, 1):

22+ (y—1)?

f(2,1) =0,0:f(2,1) =0,02f(2,1) =In(2)
hence the first order Taylor—Young expansion of f at (2,1) is
f@4heLthy) = @) o( (e hy)lly).
or, equivalently
z, = —1)In(2)+ o r—2,y—1 .
f@w) =, = D)+ o(l(@ — 2= D)

d) Since f is of class C! on D, f is differentiable at (2,1), and

Vanf(2,1) =deyf(1,1) =01f(2,1) + 92f(2,1) = In(2).



4. a) Let h € R*. Then
f(xal)ff(ov]-) _ 0

=—-—=0-—0,
xT T z—0
hence 0 f(0,1) = 0.
b) The following equivalent is well-known:
t
Vitt—1 ~ -
t—0 2
hence
. 1—V1+t¢ 1
lim ———— = ——|
t—0 t 2
hence
1-v1
lim I-vi+t +1= 1
t—0 t 2

c) If f were differentiable at (0,1), we would have dg 1)f = In(2)e; (where e is the second vector of the
standard dual basis of R?). But this can’t be true, since, for ¢ € R*,

|F(0,1+18) = f(0,1) —In(2)t]  |(14+¢t—T+%)In(t?) 1
10, - t o 3] 5 oo

We conclude that f is not differentiable at (0,1).

Exercise 2.

1. We notice that v is linear, hence we only need to show that 1, is continuous at Og.
Let h € E and x € [—1,1]. Then:

g (1) |—]/ ) dtH/o !fo(t)h(t)|dt’<‘/o |fo||oo||h||wdt\<||fo||oo|h||oc

Hence
5 (M)l < Ifollo 7]l o

Ihll

Hence 1 is continuous at Og, hence %) is continuous.

2. Let h € E. Then, for z € [-1,1],

(fo + h)(a / JolH)? dt +2 / folth(t)dt + /()mh(t)th—‘p(fo)(l’)+2¢fo(h)($)+‘b(f0)(h)(x)v

hence

®(fo +h) = @(fo) + 2¢5,(h) + @(fo)(h).

We already know that 1y, is a linear continuous map, so in order to show that @ is differentiable at fo we
only need to show that:
[eMl,. _

lim
=0 12l o

It is clear (from the computation we have already performed above), that
2
[e(®)]|.. < IIRl%

hence

el

(2] < lloe ||hn

Hence @ is differentiable at fy and
Dy, ® = 2y,



Exercise 3.

1. a) Let (z,y) € U and (u,v) € V. Then:

Y_u y? = ww y=wvuv
= 5o U — \/? (since x and y are positive).
u

It is clear that the formulas we obtain for z and y will yield (z,y) € U whenever (u,v) € V, hence ¢ is a
bijection and
et Vo— U

(u, v) M< ”,\/m).

1

Since ¢ is a bijection and ¢ is of class C° and ¢! is of class C°° (this is clear from the form of p=1),

we conclude that ¢ is a C°°-diffeomorphism.

b) i) Let (z,y) € U. Then
—y/z? 1)z

ii) We can use the Global Inverse Function Theorem: we know that ¢ is a bijection of class C*°. Now,
V(z,y) € U, det Ji, @ = 72% £0

hence, by the Global Inverse Function Theorem, ¢ is a C'*°°-diffeomorphism.
c¢) See Figure 2.
d) Let A(1,1/2).
i) p(A) =(1/2,1/2).

ii) e The u-coordinate that passes through A is the curve of equation

i.e., of equation y — /2 = 0. Hence a normal vector (of this level set) is
ny = (—1/2,1).
e The v-coordinate that passes through A is the curve of equation

1

wy:ia

hence a normal vector (of this level set) is

= (1/2,1).

ny = (y, x =
w,2) (z,y)=(1,1/2)

iii) See Figure ?7.
iv) We use the Jacobian matrix of ¢ at A, namely,

we=(32 ).
()10 ()10

Dap(nu) = (ii) and  Dayp(n,) = (

to compute:

hence
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Figure 2. u-coordinates (plain) and v-coordinates (dashed)

e) Let (u,v) € V.

i) We give the Jacobian of ¢ =1

at (u,v):
1
2u3/2 2y/uv

Ty (¢71) = s vE
NN

5

ii) The relation is:
1 -1
Dy (¢71) = (De1wmy®) -
iii) We check it with the Jacobian matrices, i.e., we check that

_ —1
T (271) = (Jom1wmy9)

We know that [
—u??/\Jo \/u/v>

Its determinant is

det Jtp—l(uyv)(p = —2u # 0.
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Figure 3. A, the u- and v-coordinates that pass through A and the vectors n, and n,

Hence i .
v
Volu =/ u/v v -
J _q v/ / 23/2  2y/uv
(omtuwm®) = —5- Rl il IR
Vo 2/u 2

An we indeed obtain .
(Jo-rum®) = Juwm (@)

2. We have
W(ey) €U, flay) =g (L.ay).
a)
O f(z,y) = —%819 (%fcy) + Y029 (%xy) ;
02 f (z,y) = %819 (%wy) + 2029 (%Iy) ;
b)

z01 f(z,y) —yOa f(z,y) = —%319 (% xy) + 2y0ag (%xy)

- yalg <g7xy) - »Tyan (gaxy>
T T T



3. a)

2
= _ﬁalg (ga ajy)
X T

= —2udg(u,v)

If f is a solution of (*), then by the computation of the previous section, we have:

Y Yy _
V(z,y) €U, —2x319 (mzy) =y

hence )
T
V(Cﬂ,y) € Uv alg (%,Iy) = 7?

Now if (u,v) € V, since ¢ is surjective, there exists (z,y) € U such that ¢(z,y) = (u

have:

V(u,v) € ‘/a 819(“” U) = _@7

i.e., g is a solution of (x).
Conversely, if g is a solution of (xx) then: for (z,y) € U,

2 2 22
x01 f(z,y) — yOo f (x,y) = f;yé)lg (%,xy) = 7% <2> = xy,

hence f is a solution of (x).

If ¢ is a solution of (x), then there exists a function A : (0,1) — R such that
Y(u,v) €V, glu,v) = —g In(u) + A(v).

If we want g of class C', we just need to take A of class C.

,v). Hence we also

¢) By Question 3a) and since ¢ is a C°°-diffeomorphism, f is a solution of class C! of () if and only if there

exists a function A : (0,1) — R of class C! such that

V(z,y) €U, f(z,y) = —% In (%) + A(xy).



