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Exercise 1.

1. The function
p : R

2 −→ R

(x, y) 7−→ y

is obviously continuous, and (0,+∞) is an open subset of R, hence p[−1]
(

(0,+∞)
)

is an open subset of R2.

The conclusion follows by observing that D = p[−1]
(

(0,+∞)
)

.

2. a) Let y ∈ R
∗
+. Then

y −√
y =

(

y −√
y
)(

y +
√
y
)

y +
√
y

=
y2 − y

y +
√
y
= (y − 1)

y

y +
√
y

hence
|y −√

y| = |y − 1| y

y +
√
y
≤ |y − 1|.

b) Let (x, y) ∈ D. Then
|y −√

y| ≤ |y − 1| ≤
∥

∥(x, y − 1)
∥

∥

2
,

since we know that for all (X,Y ) ∈ R
2, |Y | ≤

∥

∥(X,Y )
∥

∥

2
.

c) Let (x, y) ∈ D. Then:

∣

∣f(x, y)
∣

∣ =
∣

∣y −√
y
∣

∣

∣

∣

∣ln
(

x2 + (y − 1)2
)

∣

∣

∣

=
∣

∣y −√
y
∣

∣

∣

∣

∣ln
(

∥

∥(x, y − 1)
∥

∥

2

2

)∣

∣

∣

≤
∥

∥(x, y − 1)
∥

∥

2

∣

∣

∣ln
(

∥

∥(x, y − 1)
∥

∥

2

2

)∣

∣

∣ −→
‖(x,y−1)‖

2
→0

0

hence f is continuous at (0, 1).

3. Let (x, y) ∈ D \
{

(0, 1)
}

.

a)

∂1f(x, y) =
2
(

y −√
y
)

x2 + (y − 1)2

∂2f(x, y) =
(

1− 1

2
√
y

)

ln
(

x2 + (y − 1)2
)

+ 2

(

y −√
y)(y − 1)

x2 + (y − 1)2
.

b) The first-order partial derivatives of f are clearly continuous on D \
{

(0, 1)
}

(as they are obtained by

elementary operations and continuous functions only), hence f is of class C1 on D \
{

(0, 1)
}

.

c) First evaluate f and its first order partial derivatives at (2, 1):

f(2, 1) = 0, ∂1f(2, 1) = 0,∂2f(2, 1) = ln(2)

hence the first order Taylor–Young expansion of f at (2, 1) is

f(2 + hx, 1 + hy) =
(hx,hy)→(0,0)

hy ln(2) + o
(

‖(hx, hy)‖2
)

.

or, equivalently
f(x, y) =

(x,y)→(2,1)
(y − 1) ln(2) + o

(

‖((x− 2, y − 1)‖2
)

.

d) Since f is of class C1 on D, f is differentiable at (2, 1), and

∇(1,1)f(2, 1) = d(2,1)f(1, 1) = ∂1f(2, 1) + ∂2f(2, 1) = ln(2).



4. a) Let h ∈ R
∗. Then

f(x, 1)− f(0, 1)

x
=

0

x
= 0 −→

x→0
0,

hence ∂1f(0, 1) = 0.

b) The following equivalent is well-known:

√
1 + t− 1 ∼

t→0

t

2
,

hence

lim
t→0

1−
√
1 + t

t
= −1

2
,

hence

lim
t→0

1−
√
1 + t

t
+ 1 =

1

2
.

c) If f were differentiable at (0, 1), we would have d(0,1)f = ln(2)e′2 (where e′2 is the second vector of the
standard dual basis of R2). But this can’t be true, since, for t ∈ R

∗,

∣

∣f(0, 1 + t)− f(0, 1)− ln(2)t
∣

∣

‖(0, t)‖ =

∣

∣

∣

∣

∣

(

1 + t−
√
1 + t

)

ln
(

t2
)

t

∣

∣

∣

∣

∣

∼
t→0

1

2

∣

∣ln
(

t2
)∣

∣ −→
t→0

+∞.

We conclude that f is not differentiable at (0, 1).

Exercise 2.

1. We notice that ψ is linear, hence we only need to show that ψf0 is continuous at 0E .

Let h ∈ E and x ∈ [−1, 1]. Then:

∣

∣ψf0(h)(x)
∣

∣ =

∣

∣

∣

∣

∫ x

0

f0(t)h(t) dt

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ x

0

∣

∣f0(t)h(t)
∣

∣ dt

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ x

0

‖f0‖∞‖h‖∞ dt

∣

∣

∣

∣

≤ ‖f0‖∞‖h‖∞.

Hence
∥

∥ψf0(h)
∥

∥

∞ ≤ ‖f0‖∞‖h‖∞ −→
‖h‖

∞
→0

0.

Hence ψ is continuous at 0E , hence ψ is continuous.

2. Let h ∈ E. Then, for x ∈ [−1, 1],

Φ(f0 + h)(x) =

∫ x

0

f0(t)
2 dt+ 2

∫ x

0

f0(t)h(t) dt+

∫ x

0

h(t)2 dt = Φ(f0)(x) + 2ψf0(h)(x) + Φ(f0)(h)(x),

hence
Φ(f0 + h) = Φ(f0) + 2ψf0(h) + Φ(f0)(h).

We already know that ψf0 is a linear continuous map, so in order to show that Φ is differentiable at f0 we
only need to show that:

lim
‖h‖

∞
→0

∥

∥Φ(h)
∥

∥

∞
‖h‖∞

= 0.

It is clear (from the computation we have already performed above), that

∥

∥Φ(h)
∥

∥

∞ ≤ ‖h‖2∞

hence
∥

∥Φ(h)
∥

∥

∞
‖h‖∞

≤ ‖h‖∞ −→
‖h‖

∞
→0

0.

Hence Φ is differentiable at f0 and
Df0Φ = 2ψf0 .



Exercise 3.

1. a) Let (x, y) ∈ U and (u, v) ∈ V . Then:

ϕ(x, y) = (u, v) ⇐⇒
{y

x
= u

xy = v
⇐⇒

{

y2 = uv

x2 =
v

u

⇐⇒







y =
√
uv

x =

√

v

u

(since x and y are positive).

It is clear that the formulas we obtain for x and y will yield (x, y) ∈ U whenever (u, v) ∈ V , hence ϕ is a
bijection and

ϕ−1 : V −→ U

(u, v) 7−→
(√

v

u
,
√
uv

)

.

Since ϕ is a bijection and ϕ is of class C∞ and ϕ−1 is of class C∞ (this is clear from the form of ϕ−1),
we conclude that ϕ is a C∞-diffeomorphism.

b) i) Let (x, y) ∈ U . Then

J(x,y)ϕ =

(

−y/x2 1/x
y x

)

.

ii) We can use the Global Inverse Function Theorem: we know that ϕ is a bijection of class C∞. Now,

∀(x, y) ∈ U, det J(x,y)ϕ = −2
y

x
6= 0

hence, by the Global Inverse Function Theorem, ϕ is a C∞-diffeomorphism.

c) See Figure 2.

d) Let A(1, 1/2).

i) ϕ(A) = (1/2, 1/2).

ii) • The u-coordinate that passes through A is the curve of equation

y

x
=

1

2

i.e., of equation y − x/2 = 0. Hence a normal vector (of this level set) is

nu = (−1/2, 1).

• The v-coordinate that passes through A is the curve of equation

xy =
1

2
,

hence a normal vector (of this level set) is

nv = (y, x)
∣

∣

∣

(x,y)=(1,1/2)
= (1/2, 1).

iii) See Figure ??.

iv) We use the Jacobian matrix of ϕ at A, namely,

JAϕ =

(

−1/2 1
1/2 1

)

,

to compute:

JAϕ

(

−1/2
1

)

=
1

4

(

5
3

)

and JAϕ

(

1/2
1

)

=
1

4

(

3
5

)

,

hence

DAϕ(nu) =

(

5

4
,
3

4

)

and DAϕ(nv) =

(

3

4
,
5

4

)

.
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Figure 2. u-coordinates (plain) and v-coordinates (dashed)

e) Let (u, v) ∈ V .

i) We give the Jacobian of ϕ−1 at (u, v):

J(u,v)
(

ϕ−1
)

=











−
√
v

2u3/2
1

2
√
uv

√
v

2
√
u

√
u

2
√
v











.

ii) The relation is:

D(u,v)

(

ϕ−1
)

=
(

Dϕ−1(u,v)ϕ
)−1

.

iii) We check it with the Jacobian matrices, i.e., we check that

J(u,v)
(

ϕ−1
)

=
(

Jϕ−1(u,v)ϕ
)−1

.

We know that

Jϕ−1(u,v)ϕ = J(
√
v/u,

√
uv)ϕ =

(

−u3/2/√v
√

u/v√
uv

√

v/u

)

.

Its determinant is
det Jϕ−1(u,v)ϕ = −2u 6= 0.
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Figure 3. A, the u- and v-coordinates that pass through A and the vectors nu and nv

Hence

(

Jϕ−1(u,v)ϕ
)−1

= − 1

2u







√

v/u −
√

u/v

−√
uv −u

3/2

√
v






=











−
√
v

2u3/2
1

2
√
uv

√
v

2
√
u

√
u

2
√
v











.

An we indeed obtain
(

Jϕ−1(u,v)ϕ
)−1

= J(u,v)
(

ϕ−1
)

.

2. We have
∀(x, y) ∈ U, f(x, y) = g

(y

x
, xy

)

.

a)

∂1f(x, y) = − y

x2
∂1g

(y

x
, xy

)

+ y∂2g
(y

x
, xy

)

,

∂2f(x, y) =
1

x
∂1g

(y

x
, xy

)

+ x∂2g
(y

x
, xy

)

,

b)

x∂1f(x, y)− y∂2f(x, y) = −y
x
∂1g

(y

x
, xy

)

+ xy∂2g
(y

x
, xy

)

− y

x
∂1g

(y

x
, xy

)

− xy∂2g
(y

x
, xy

)



= −2y

x
∂1g

(y

x
, xy

)

= −2u∂1g(u, v)

3. a) If f is a solution of (∗), then by the computation of the previous section, we have:

∀(x, y) ∈ U, −2
y

x
∂1g

(y

x
, xy

)

= xy

hence

∀(x, y) ∈ U, ∂1g
(y

x
, xy

)

= −x
2

2

Now if (u, v) ∈ V , since ϕ is surjective, there exists (x, y) ∈ U such that ϕ(x, y) = (u, v). Hence we also
have:

∀(u, v) ∈ V, ∂1g(u, v) = − v

2u
,

i.e., g is a solution of (∗).
Conversely, if g is a solution of (∗∗) then: for (x, y) ∈ U ,

x∂1f(x, y)− y∂2f(x, y) = −2y

x
∂1g

(y

x
, xy

)

= −2y

x

(

−x
2

2

)

= xy,

hence f is a solution of (∗).
b) If g is a solution of (∗), then there exists a function A : (0, 1) → R such that

∀(u, v) ∈ V, g(u, v) = −v
2
ln(u) +A(v).

If we want g of class C1, we just need to take A of class C1.

c) By Question 3a) and since ϕ is a C∞-diffeomorphism, f is a solution of class C1 of (∗) if and only if there
exists a function A : (0, 1) → R of class C1 such that

∀(x, y) ∈ U, f(x, y) = −xy
2

ln
(y

x

)

+A(xy).


