Exercise 1.

1. The function

$$
\begin{aligned}
p: \mathbb{R}^{2} & \longrightarrow \mathbb{R} \\
(x, y) & \longmapsto y
\end{aligned}
$$

is obviously continuous, and $(0,+\infty)$ is an open subset of \mathbb{R}, hence $p^{[-1]}((0,+\infty))$ is an open subset of \mathbb{R}^{2}. The conclusion follows by observing that $D=p^{[-1]}((0,+\infty))$.
2. a) Let $y \in \mathbb{R}_{+}^{*}$. Then

$$
y-\sqrt{y}=\frac{(y-\sqrt{y})(y+\sqrt{y})}{y+\sqrt{y}}=\frac{y^{2}-y}{y+\sqrt{y}}=(y-1) \frac{y}{y+\sqrt{y}}
$$

hence

$$
|y-\sqrt{y}|=|y-1| \frac{y}{y+\sqrt{y}} \leq|y-1| .
$$

b) Let $(x, y) \in D$. Then

$$
|y-\sqrt{y}| \leq|y-1| \leq\|(x, y-1)\|_{2},
$$

since we know that for all $(X, Y) \in \mathbb{R}^{2},|Y| \leq\|(X, Y)\|_{2}$.
c) Let $(x, y) \in D$. Then:

$$
\begin{aligned}
|f(x, y)| & =|y-\sqrt{y}|\left|\ln \left(x^{2}+(y-1)^{2}\right)\right| \\
& =|y-\sqrt{y}|\left|\ln \left(\|(x, y-1)\|_{2}^{2}\right)\right| \\
& \leq\|(x, y-1)\|_{2}\left|\ln \left(\|(x, y-1)\|_{2}^{2}\right)\right| \underset{\|(x, y-1)\|_{2} \rightarrow 0}{ } 0
\end{aligned}
$$

hence f is continuous at $(0,1)$.
3. Let $(x, y) \in D \backslash\{(0,1)\}$.
a)

$$
\begin{aligned}
& \partial_{1} f(x, y)=\frac{2(y-\sqrt{y})}{x^{2}+(y-1)^{2}} \\
& \partial_{2} f(x, y)=\left(1-\frac{1}{2 \sqrt{y}}\right) \ln \left(x^{2}+(y-1)^{2}\right)+2 \frac{(y-\sqrt{y})(y-1)}{x^{2}+(y-1)^{2}} .
\end{aligned}
$$

b) The first-order partial derivatives of f are clearly continuous on $D \backslash\{(0,1)\}$ (as they are obtained by elementary operations and continuous functions only), hence f is of class C^{1} on $D \backslash\{(0,1)\}$.
c) First evaluate f and its first order partial derivatives at $(2,1)$:

$$
f(2,1)=0, \partial_{1} f(2,1) \quad=0, \partial_{2} f(2,1) \quad=\ln (2)
$$

hence the first order Taylor-Young expansion of f at $(2,1)$ is

$$
f\left(2+h_{x}, 1+h_{y}\right)_{\left(h_{x}, h_{y}\right) \rightarrow(0,0)}^{=} h_{y} \ln (2)+o\left(\left\|\left(h_{x}, h_{y}\right)\right\|_{2}\right) .
$$

or, equivalently

$$
f(x, y) \underset{(x, y) \rightarrow(2,1)}{=}(y-1) \ln (2)+o\left(\|\left((x-2, y-1) \|_{2}\right) .\right.
$$

d) Since f is of class C^{1} on D, f is differentiable at $(2,1)$, and

$$
\nabla_{(1,1)} f(2,1)=\mathrm{d}_{(2,1)} f(1,1)=\partial_{1} f(2,1)+\partial_{2} f(2,1)=\ln (2) .
$$

4. a) Let $h \in \mathbb{R}^{*}$. Then

$$
\frac{f(x, 1)-f(0,1)}{x}=\frac{0}{x}=0 \underset{x \rightarrow 0}{\longrightarrow} 0,
$$

hence $\partial_{1} f(0,1)=0$.
b) The following equivalent is well-known:

$$
\sqrt{1+t}-1 \underset{t \rightarrow 0}{\sim} \frac{t}{2}
$$

hence

$$
\lim _{t \rightarrow 0} \frac{1-\sqrt{1+t}}{t}=-\frac{1}{2}
$$

hence

$$
\lim _{t \rightarrow 0} \frac{1-\sqrt{1+t}}{t}+1=\frac{1}{2}
$$

c) If f were differentiable at $(0,1)$, we would have $\mathrm{d}_{(0,1)} f=\ln (2) e_{2}^{\prime}$ (where e_{2}^{\prime} is the second vector of the standard dual basis of \mathbb{R}^{2}). But this can't be true, since, for $t \in \mathbb{R}^{*}$,

$$
\frac{|f(0,1+t)-f(0,1)-\ln (2) t|}{\|(0, t)\|}=\left|\frac{(1+t-\sqrt{1+t}) \ln \left(t^{2}\right)}{t}\right| \underset{t \rightarrow 0}{\sim} \frac{1}{2}\left|\ln \left(t^{2}\right)\right| \underset{t \rightarrow 0}{\longrightarrow}+\infty .
$$

We conclude that f is not differentiable at $(0,1)$.

Exercise 2.

1. We notice that ψ is linear, hence we only need to show that $\psi_{f_{0}}$ is continuous at 0_{E}.

Let $h \in E$ and $x \in[-1,1]$. Then:

$$
\left|\psi_{f_{0}}(h)(x)\right|=\left|\int_{0}^{x} f_{0}(t) h(t) \mathrm{d} t\right| \leq\left|\int_{0}^{x}\right| f_{0}(t) h(t)|\mathrm{d} t| \leq\left|\int_{0}^{x}\left\|f_{0}\right\|_{\infty}\|h\|_{\infty} \mathrm{d} t\right| \leq\left\|f_{0}\right\|_{\infty}\|h\|_{\infty}
$$

Hence

$$
\left\|\psi_{f_{0}}(h)\right\|_{\infty} \leq\left\|f_{0}\right\|_{\infty}\|h\|_{\infty} \xrightarrow[\| \|_{\infty} \rightarrow 0]{\longrightarrow} 0
$$

Hence ψ is continuous at 0_{E}, hence ψ is continuous.
2. Let $h \in E$. Then, for $x \in[-1,1]$,

$$
\Phi\left(f_{0}+h\right)(x)=\int_{0}^{x} f_{0}(t)^{2} \mathrm{~d} t+2 \int_{0}^{x} f_{0}(t) h(t) \mathrm{d} t+\int_{0}^{x} h(t)^{2} \mathrm{~d} t=\Phi\left(f_{0}\right)(x)+2 \psi_{f_{0}}(h)(x)+\Phi\left(f_{0}\right)(h)(x)
$$

hence

$$
\Phi\left(f_{0}+h\right)=\Phi\left(f_{0}\right)+2 \psi_{f_{0}}(h)+\Phi\left(f_{0}\right)(h)
$$

We already know that $\psi_{f_{0}}$ is a linear continuous map, so in order to show that Φ is differentiable at f_{0} we only need to show that:

$$
\lim _{\|h\|_{\infty} \rightarrow 0} \frac{\|\Phi(h)\|_{\infty}}{\|h\|_{\infty}}=0
$$

It is clear (from the computation we have already performed above), that

$$
\|\Phi(h)\|_{\infty} \leq\|h\|_{\infty}^{2}
$$

hence

$$
\frac{\|\Phi(h)\|_{\infty}}{\|h\|_{\infty}} \leq\|h\|_{\infty} \underset{\|h\|_{\infty} \rightarrow 0}{\longrightarrow} 0
$$

Hence Φ is differentiable at f_{0} and

$$
D_{f_{0}} \Phi=2 \psi_{f_{0}}
$$

Exercise 3.

1. a) Let $(x, y) \in U$ and $(u, v) \in V$. Then:
$\varphi(x, y)=(u, v) \Longleftrightarrow\left\{\begin{array}{l}\frac{y}{x}=u \\ x y=v\end{array} \Longleftrightarrow\left\{\begin{array}{l}y^{2}=u v \\ x^{2}=\frac{v}{u}\end{array} \Longleftrightarrow\left\{\begin{array}{l}y=\sqrt{u v} \\ x=\sqrt{\frac{v}{u}}\end{array} \quad\right.\right.\right.$ (since x and y are positive).
It is clear that the formulas we obtain for x and y will yield $(x, y) \in U$ whenever $(u, v) \in V$, hence φ is a bijection and

$$
\begin{aligned}
\varphi^{-1}: V & \longrightarrow \\
(u, v) & \longmapsto\left(\sqrt{\frac{v}{u}}, \sqrt{u v}\right) .
\end{aligned}
$$

Since φ is a bijection and φ is of class C^{∞} and φ^{-1} is of class C^{∞} (this is clear from the form of φ^{-1}), we conclude that φ is a C^{∞}-diffeomorphism.
b) i) Let $(x, y) \in U$. Then

$$
J_{(x, y)} \varphi=\left(\begin{array}{cc}
-y / x^{2} & 1 / x \\
y & x
\end{array}\right) .
$$

ii) We can use the Global Inverse Function Theorem: we know that φ is a bijection of class C^{∞}. Now,

$$
\forall(x, y) \in U, \operatorname{det} J_{(x, y)} \varphi=-2 \frac{y}{x} \neq 0
$$

hence, by the Global Inverse Function Theorem, φ is a C^{∞}-diffeomorphism.
c) See Figure 2.
d) Let $A(1,1 / 2)$.
i) $\varphi(A)=(1 / 2,1 / 2)$.
ii) - The u-coordinate that passes through A is the curve of equation

$$
\frac{y}{x}=\frac{1}{2}
$$

i.e., of equation $y-x / 2=0$. Hence a normal vector (of this level set) is

$$
n_{u}=(-1 / 2,1) .
$$

- The v-coordinate that passes through A is the curve of equation

$$
x y=\frac{1}{2}
$$

hence a normal vector (of this level set) is

$$
n_{v}=\left.(y, x)\right|_{(x, y)=(1,1 / 2)}=(1 / 2,1) .
$$

iii) See Figure ??
iv) We use the Jacobian matrix of φ at A, namely,

$$
J_{A} \varphi=\left(\begin{array}{cc}
-1 / 2 & 1 \\
1 / 2 & 1
\end{array}\right)
$$

to compute:

$$
J_{A} \varphi\binom{-1 / 2}{1}=\frac{1}{4}\binom{5}{3} \quad \text { and } \quad J_{A} \varphi\binom{1 / 2}{1}=\frac{1}{4}\binom{3}{5}
$$

hence

$$
D_{A} \varphi\left(n_{u}\right)=\left(\frac{5}{4}, \frac{3}{4}\right) \quad \text { and } \quad D_{A} \varphi\left(n_{v}\right)=\left(\frac{3}{4}, \frac{5}{4}\right)
$$

Figure 2. u-coordinates (plain) and v-coordinates (dashed)
e) Let $(u, v) \in V$.
i) We give the Jacobian of φ^{-1} at (u, v) :

$$
J_{(u, v)}\left(\varphi^{-1}\right)=\left(\begin{array}{cc}
-\frac{\sqrt{v}}{2 u^{3 / 2}} & \frac{1}{2 \sqrt{u v}} \\
\frac{\sqrt{v}}{2 \sqrt{u}} & \frac{\sqrt{u}}{2 \sqrt{v}}
\end{array}\right)
$$

ii) The relation is:

$$
D_{(u, v)}\left(\varphi^{-1}\right)=\left(D_{\varphi^{-1}(u, v)} \varphi\right)^{-1}
$$

iii) We check it with the Jacobian matrices, i.e., we check that

$$
J_{(u, v)}\left(\varphi^{-1}\right)=\left(J_{\varphi^{-1}(u, v)} \varphi\right)^{-1}
$$

We know that

$$
J_{\varphi^{-1}(u, v)} \varphi=J_{(\sqrt{v / u}, \sqrt{u v})} \varphi=\left(\begin{array}{cc}
-u^{3 / 2} / \sqrt{v} & \sqrt{u / v} \\
\sqrt{u v} & \sqrt{v / u}
\end{array}\right) .
$$

Its determinant is

$$
\operatorname{det} J_{\varphi^{-1}(u, v)} \varphi=-2 u \neq 0 .
$$

Figure 3. A, the u - and v-coordinates that pass through A and the vectors n_{u} and n_{v}

Hence

$$
\left(J_{\varphi^{-1}(u, v)} \varphi\right)^{-1}=-\frac{1}{2 u}\left(\begin{array}{cc}
\sqrt{v / u} & -\sqrt{u / v} \\
-\sqrt{u v} & -\frac{u^{3 / 2}}{\sqrt{v}}
\end{array}\right)=\left(\begin{array}{cc}
-\frac{\sqrt{v}}{2 u^{3 / 2}} & \frac{1}{2 \sqrt{u v}} \\
\frac{\sqrt{v}}{2 \sqrt{u}} & \frac{\sqrt{u}}{2 \sqrt{v}}
\end{array}\right) .
$$

An we indeed obtain

$$
\left(J_{\varphi^{-1}(u, v)} \varphi\right)^{-1}=J_{(u, v)}\left(\varphi^{-1}\right)
$$

2. We have

$$
\forall(x, y) \in U, f(x, y)=g\left(\frac{y}{x}, x y\right) .
$$

a)

$$
\begin{aligned}
& \partial_{1} f(x, y)=-\frac{y}{x^{2}} \partial_{1} g\left(\frac{y}{x}, x y\right)+y \partial_{2} g\left(\frac{y}{x}, x y\right), \\
& \partial_{2} f(x, y)=\frac{1}{x} \partial_{1} g\left(\frac{y}{x}, x y\right)+x \partial_{2} g\left(\frac{y}{x}, x y\right)
\end{aligned}
$$

b)

$$
\begin{aligned}
x \partial_{1} f(x, y)-y \partial_{2} f(x, y)=- & \frac{y}{x} \partial_{1} g\left(\frac{y}{x}, x y\right)+x y \partial_{2} g\left(\frac{y}{x}, x y\right) \\
& -\frac{y}{x} \partial_{1} g\left(\frac{y}{x}, x y\right)-x y \partial_{2} g\left(\frac{y}{x}, x y\right)
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{2 y}{x} \partial_{1} g\left(\frac{y}{x}, x y\right) \\
& =-2 u \partial_{1} g(u, v)
\end{aligned}
$$

3. a) If f is a solution of $(*)$, then by the computation of the previous section, we have:

$$
\forall(x, y) \in U,-2 \frac{y}{x} \partial_{1} g\left(\frac{y}{x}, x y\right)=x y
$$

hence

$$
\forall(x, y) \in U, \partial_{1} g\left(\frac{y}{x}, x y\right)=-\frac{x^{2}}{2}
$$

Now if $(u, v) \in V$, since φ is surjective, there exists $(x, y) \in U$ such that $\varphi(x, y)=(u, v)$. Hence we also have:

$$
\forall(u, v) \in V, \partial_{1} g(u, v)=-\frac{v}{2 u},
$$

i.e., g is a solution of (*).

Conversely, if g is a solution of $(* *)$ then: for $(x, y) \in U$,

$$
x \partial_{1} f(x, y)-y \partial_{2} f(x, y)=-\frac{2 y}{x} \partial_{1} g\left(\frac{y}{x}, x y\right)=-\frac{2 y}{x}\left(-\frac{x^{2}}{2}\right)=x y
$$

hence f is a solution of $(*)$.
b) If g is a solution of $(*)$, then there exists a function $A:(0,1) \rightarrow \mathbb{R}$ such that

$$
\forall(u, v) \in V, g(u, v)=-\frac{v}{2} \ln (u)+A(v)
$$

If we want g of class C^{1}, we just need to take A of class C^{1}.
c) By Question 3a) and since φ is a C^{∞}-diffeomorphism, f is a solution of class C^{1} of $(*)$ if and only if there exists a function $A:(0,1) \rightarrow \mathbb{R}$ of class C^{1} such that

$$
\forall(x, y) \in U, f(x, y)=-\frac{x y}{2} \ln \left(\frac{y}{x}\right)+A(x y)
$$

