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Exercise 1.

1. Let (x, y) ∈ U and (u, v) ∈ R
2. Then:

ϕ(x, y) = (u, v) ⇐⇒
{

xy = u

2x = v
⇐⇒

{

y = u/x (x 6= 0)

x = v/2
⇐⇒

{

y = 2u/v

x = v/2

Now,
v/2 ∈ (0, 1) ⇐⇒ v ∈ (0, 2)

and
2u/v > v/2 ⇐⇒ 4u > v2.

Hence,
V =

{

(u, v) ∈ R
2
∣

∣ 0 < v < 2, u > v2/2
}

.

We now check that
ψ : U −→ V

(x, y) 7−→ (xy, 2x)

is a C2-diffeomorphism: from the previous computation, it is clear that ψ is a bijection, and that

ψ−1 : V −→ U
(u, v) 7−→ (v/2, 2u/v).

It is clear that both ψ and ψ−1 are of class C2 (even of class C∞), hence ψ is a C2-diffeomorphism.

See Figures 4 and 5.

2. Let f : U → R be a function of class C2 and define g = f ◦ ψ−1. Since ψ−1 is of class C2, by composition, g
is also of class C2. Now, f = g ◦ ψ, and we have, for (x, y) ∈ U ,

f(x, y) = g(xy, 2x),

∂1f(x, y) = y∂1g(xy, 2x) + 2∂2g(xy, 2x),

∂2f(x, y) = x∂1g(xy, 2x),

∂21,2f(x, y) = ∂1g(xy, 2x) + xy∂21,1g(xy, 2x) + 2x∂21,2g(xy, 2x)

∂22,2f(x, y) = x2∂21,1g(xy, 2x),

and hence

x∂21,2f(x, y)− y∂22,2f(x, y)− ∂2f(x, y) = x
(

∂1g(xy, 2x) + xy∂21,1g(xy, 2x) + 2x∂21,2g(xy, 2x)
)

− x2y∂21,1g(xy, 2x)

− x∂1g(xy, 2x)

= 2x2∂21,2g(xy, 2x).

Hence,

f is a solution of (E) ⇐⇒ ∀(x, y) ∈ U, 2x2∂21,2g(xy, 2x) = 2x3y

⇐⇒ ∀(x, y) ∈ U, ∂21,2g(xy, 2x) = xy

⇐⇒ ∀(u, v) ∈ V, ∂21,2g(u, v) = u

⇐⇒ ∃a : (0, 2) → R, ∀(u, v) ∈ V, ∂2g(u, v) =
u2

2
+ a(v)

⇐⇒ ∃A : (0, 2) → R, ∃B : R∗

+ → R, ∀(u, v) ∈ V, g(u, v) =
u2v

2
+A(v) +B(u)

⇐⇒ ∃A : (0, 2) → R, ∃B : R∗

+ → R, ∀(x, y) ∈ U, f(x, y) = x3y2 +A(2x) +B(xy).
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Figure 4. Open set U of Exercise 1.

Hence the general solution of (E) is:

f(x, y) = x3y2 +A(2x) +B(xy),

where A : (0, 2) → R and B : R∗

+ → R are functions of class C2.

Exercise 2.

1. We apply the Implicit Function Theorem to f at O:

• The function f is of class C2 (or even of class C∞),

• f(0, 0) = 0,

• ∂2f(0, 0) = 2 6= 0,

hence, by the Implicit Function Theorem, there exists an open interval U containing 0 and an open interval
V containing 0 and a mapping ϕ : U → V of class C2 such that

∀(x, y) ∈ U × V,
(

f(x, y) = 0 ⇐⇒ y = ϕ(x)
)

.

We also have ϕ(0) = 0.

2. a) For (x, y) ∈ R
2,

∂1f(x, y) = 4x− 2 and ∂2f(x, y) = −2
(

2y3 − y + 1
)(

6y2 − 1
)

,

hence,

∀x ∈ U, ϕ′(x) =
2x− 1

(

2ϕ(x)3 − ϕ(x) + 1
)(

6ϕ(x)2 − 1
)
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Figure 5. Open set V of Exercise 1.

In particular, since ϕ(0) = 0,
ϕ′(0) = 1.

There are lots of possibilities to get the value of ϕ′′(0). For example, we define

∀x ∈ U, D(x) =
(

2ϕ(x)3 − ϕ(x) + 1
)(

6ϕ(x)2 − 1
)

.

Then, D(0) = −1 and D′(0) = ϕ′(0) = 1, hence, by the quotient rule,

ϕ′′(0) =
2D(0) +D′(0)

D(0)2
= −1.

We conclude that:

ϕ(x) =
x→0

x− x2

2
+ o

(

x2
)

.

b) Hence, an equation of the tangent line to C at O is:

∆: y = x,

and, in a neighborhood of O, the curve C lies below ∆.

3. a) Let A(x, y) ∈ R
2. The symmetric of A with respect to the straight line x = 1/2 is A′(1− x, y). Now,

f(A′) = f(1− x, y) = 2(1− x)2 − 2(1− x) + 1−
(

1− y + 2y3
)2

= 2− 4x+ 2x2 − 2 + 2x+ 1−
(

1− y + 2y3
)2

= 2x2 − 2x+ 1−
(

1− y + 2y3
)2

= f(A),

hence:
A ∈ C ⇐⇒ f(A) = 0 ⇐⇒ f(A′) = 0 ⇐⇒ A′ ∈ C .



b) See Figure 6.
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Figure 6. Curve C of Exercise 2 around O and A(1, 0), and the tangent lines (dashed) at O and A.

c) By symmetry, the equation of the tangent line to C at A(1, 0) is:

y = −x+ 1.

Note. We have included a zoomed out version of C in Figure 7.
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Figure 7. Curve C of Exercise 2.



Exercise 3.

1. We apply the Implicit Function Theorem:

• The function f is clearly of class C2 (and even of class C∞),

• f(0, 0, 0) = 0,

• ∂2f(0, 0, 0) = 1 6= 0,

hence, by the Implicit Function Theorem, there exists an open subset U of R2 containing (0, 0) and an open
interval V containing 0 and a function ϕ : U → V of class C2 such that ϕ(0, 0) = 0 and

∀(x, z) ∈ U, ∀y ∈ V,
(

f(x, y, z) = 0 ⇐⇒ y = ϕ(x, z).

2. a)
−−→
grad f(0, 0, 0) = (1, 1, 0), hence an equation of P is:

P : x+ y = 0.

b)

∂1ϕ(0, 0) = −∂1f
(

0, ϕ(0, 0), 0
)

∂2f
(

0, ϕ(0, 0), 0
) = −1

and

∂2ϕ(0, 0) = −∂3f
(

0, ϕ(0, 0), 0
)

∂2f
(

0, ϕ(0, 0), 0
) = 0,

hence the first order Taylor–Young expansion of ϕ at (0, 0) is:

ϕ(x, z) =
(x,z)→(0,0)

−x+ o
(

‖(x, y)‖
)

hence an equation of the tangent plane to C at (0, 0) is:

P : y = −x.

3. From the “moreover” part of the Implicit Function Theorem, we know that, for all (x, z) ∈ U ,

∂1ϕ(x, z) = −∂1f
(

x, ϕ(x, z), z
)

∂2f
(

x, ϕ(x, z), z
) = − zeϕ(x,z) + ez

xzeϕ(x,z) + ez

In particular,

∂1ϕ(0, z) = −ze
ϕ(0,z) + ez

ez
= −zeϕ(0,z)−z − 1

hence

∂22,1ϕ(0, 0) = lim
z→0

ϕ(0, z)− ϕ(0, 0)

z
= lim

z→0
−eϕ(0,z)−z = −1.

Since ϕ is of class C2, ∂21,2ϕ(0, 0) = ∂22,1ϕ(0, 0) = −1.

Exercise 4.

1. Since 1/n −→
n→+∞

0,

e1/n − 1

nα
∼

n→+∞

1/n

nα
=

1

nα+1
> 0.

Now, by Riemann, the series
∑

n 1/nα+1 converges if and only α+1 > 1, i.e., α > 0. Hence, by the equivalent
test, the series converges if and only if α > 0.

2. Define

∀n ∈ N
∗, un =

1√
n+ 2n

> 0.

The series we’re studying is
∑

n(−1)nun, which is an alternating series. Now,

• lim
n→+∞

un = 0,



• the sequence (un)n∈N∗ is decreasing,

hence, by the alternating series test, the series
∑

n(−1)nun converges.

Moreover, by the alternating series test, we know that the sign of RN is that of uN+1, that is:

• If N is odd, then RN ≥ 0,

• If N is even, then RN ≤ 0.

Moreover, we have:

|RN | ≤ |uN+1| =
1√

N + 1 + 2(N + 1)
.

3. a)
1

1 + n2
∼

n→+∞

1

n2
> 0.

Now by Riemann, we know that the series
∑

n 1/n
2 converges hence, by the equivalent test, the series

we’re studying is convergent.

b) Define the function
f : R+ −→ R

t 7−→ 1

1 + t2
.

• the function f is non-increasing,

•
∀n ∈ N,

1

1 + n2
= f(n),

hence, by the Integral Comparison Test, for N ∈ N
∗,

∫ +∞

N+1

f(t) dt ≤ S − SN =

+∞
∑

n=N+1

f(n) ≤
∫ +∞

N

f(t) dt.

Now, for a, b ∈ R
∗

+,
∫ b

a

dt

1 + t2
= arctan(b)− arctan(a),

hence
∫ +∞

a

dt

1 + t2
=
π

2
− arctan(a) = arctan

(

1

a

)

.

Hence, for N ∈ N
∗,

arctan

(

1

N + 1

)

≤ S − SN =

+∞
∑

n=N+1

f(n) ≤ arctan

(

1

N

)

.


