Exercise 1.

1. Let $(x, y) \in U$ and $(u, v) \in \mathbb{R}^{2}$. Then:

$$
\varphi(x, y)=(u, v) \Longleftrightarrow\left\{\begin{array} { l }
{ x y = u } \\
{ 2 x = v }
\end{array} \Longleftrightarrow \left\{\begin{array} { l }
{ y = u / x } \\
{ x = v / 2 }
\end{array} \quad (x \neq 0) \quad \Longleftrightarrow \left\{\begin{array}{l}
y=2 u / v \\
x=v / 2
\end{array}\right.\right.\right.
$$

Now,

$$
v / 2 \in(0,1) \Longleftrightarrow v \in(0,2)
$$

and

$$
2 u / v>v / 2 \Longleftrightarrow 4 u>v^{2}
$$

Hence,

$$
V=\left\{(u, v) \in \mathbb{R}^{2} \mid 0<v<2, u>v^{2} / 2\right\} .
$$

We now check that

$$
\begin{array}{cc}
\psi: \quad U & \longrightarrow V \\
(x, y) & \longmapsto(x y, 2 x)
\end{array}
$$

is a C^{2}-diffeomorphism: from the previous computation, it is clear that ψ is a bijection, and that

$$
\begin{array}{cccc}
\psi^{-1}: \begin{array}{c}
V \\
(u, v)
\end{array}>(v / 2,2 u / v) .
\end{array}
$$

It is clear that both ψ and ψ^{-1} are of class C^{2} (even of class C^{∞}), hence ψ is a C^{2}-diffeomorphism.
See Figures 4 and 5 .
2. Let $f: U \rightarrow \mathbb{R}$ be a function of class C^{2} and define $g=f \circ \psi^{-1}$. Since ψ^{-1} is of class C^{2}, by composition, g is also of class C^{2}. Now, $f=g \circ \psi$, and we have, for $(x, y) \in U$,

$$
\begin{aligned}
f(x, y) & =g(x y, 2 x), \\
\partial_{1} f(x, y) & =y \partial_{1} g(x y, 2 x)+2 \partial_{2} g(x y, 2 x), \\
\partial_{2} f(x, y) & =x \partial_{1} g(x y, 2 x), \\
\partial_{1,2}^{2} f(x, y) & =\partial_{1} g(x y, 2 x)+x y \partial_{1,1}^{2} g(x y, 2 x)+2 x \partial_{1,2}^{2} g(x y, 2 x) \\
\partial_{2,2}^{2} f(x, y) & =x^{2} \partial_{1,1}^{2} g(x y, 2 x),
\end{aligned}
$$

and hence

$$
\begin{aligned}
& x \partial_{1,2}^{2} f(x, y)-y \partial_{2,2}^{2} f(x, y)-\partial_{2} f(x, y)= x \\
&\left(\partial_{1} g(x y, 2 x)+x y \partial_{1,1}^{2} g(x y, 2 x)+2 x \partial_{1,2}^{2} g(x y, 2 x)\right) \\
&-x^{2} y \partial_{1,1}^{2} g(x y, 2 x) \\
&-x \partial_{1} g(x y, 2 x) \\
&= x^{2} \partial_{1,2}^{2} g(x y, 2 x) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
f \text { is a solution of }(\mathrm{E}) & \Longleftrightarrow \forall(x, y) \in U, 2 x^{2} \partial_{1,2}^{2} g(x y, 2 x)=2 x^{3} y \\
& \Longleftrightarrow \forall(x, y) \in U, \partial_{1,2}^{2} g(x y, 2 x)=x y \\
& \Longleftrightarrow \forall(u, v) \in V, \partial_{1,2}^{2} g(u, v)=u \\
& \Longleftrightarrow \exists a:(0,2) \rightarrow \mathbb{R}, \forall(u, v) \in V, \partial_{2} g(u, v)=\frac{u^{2}}{2}+a(v) \\
& \Longleftrightarrow \exists A:(0,2) \rightarrow \mathbb{R}, \exists B: \mathbb{R}_{+}^{*} \rightarrow \mathbb{R}, \forall(u, v) \in V, g(u, v)=\frac{u^{2} v}{2}+A(v)+B(u) \\
& \Longleftrightarrow \exists A:(0,2) \rightarrow \mathbb{R}, \exists B: \mathbb{R}_{+}^{*} \rightarrow \mathbb{R}, \forall(x, y) \in U, f(x, y)=x^{3} y^{2}+A(2 x)+B(x y) .
\end{aligned}
$$

Figure 4. Open set U of Exercise 1.

Hence the general solution of (E) is:

$$
f(x, y)=x^{3} y^{2}+A(2 x)+B(x y)
$$

where $A:(0,2) \rightarrow \mathbb{R}$ and $B: \mathbb{R}_{+}^{*} \rightarrow \mathbb{R}$ are functions of class C^{2}.

Exercise 2.

1. We apply the Implicit Function Theorem to f at O :

- The function f is of class C^{2} (or even of class C^{∞}),
- $f(0,0)=0$,
- $\partial_{2} f(0,0)=2 \neq 0$,
hence, by the Implicit Function Theorem, there exists an open interval U containing 0 and an open interval V containing 0 and a mapping $\varphi: U \rightarrow V$ of class C^{2} such that

$$
\forall(x, y) \in U \times V,(f(x, y)=0 \Longleftrightarrow y=\varphi(x))
$$

We also have $\varphi(0)=0$.
2. a) For $(x, y) \in \mathbb{R}^{2}$,

$$
\partial_{1} f(x, y)=4 x-2 \quad \text { and } \quad \partial_{2} f(x, y)=-2\left(2 y^{3}-y+1\right)\left(6 y^{2}-1\right)
$$

hence,

$$
\forall x \in U, \varphi^{\prime}(x)=\frac{2 x-1}{\left(2 \varphi(x)^{3}-\varphi(x)+1\right)\left(6 \varphi(x)^{2}-1\right)}
$$

Figure 5. Open set V of Exercise 1.

In particular, since $\varphi(0)=0$,

$$
\varphi^{\prime}(0)=1
$$

There are lots of possibilities to get the value of $\varphi^{\prime \prime}(0)$. For example, we define

$$
\forall x \in U, D(x)=\left(2 \varphi(x)^{3}-\varphi(x)+1\right)\left(6 \varphi(x)^{2}-1\right)
$$

Then, $D(0)=-1$ and $D^{\prime}(0)=\varphi^{\prime}(0)=1$, hence, by the quotient rule,

$$
\varphi^{\prime \prime}(0)=\frac{2 D(0)+D^{\prime}(0)}{D(0)^{2}}=-1
$$

We conclude that:

$$
\varphi(x) \underset{x \rightarrow 0}{=} x-\frac{x^{2}}{2}+o\left(x^{2}\right) .
$$

b) Hence, an equation of the tangent line to \mathscr{C} at O is:

$$
\Delta: y=x
$$

and, in a neighborhood of O, the curve \mathscr{C} lies below Δ.
3. a) Let $A(x, y) \in \mathbb{R}^{2}$. The symmetric of A with respect to the straight line $x=1 / 2$ is $A^{\prime}(1-x, y)$. Now,

$$
\begin{aligned}
f\left(A^{\prime}\right) & =f(1-x, y)=2(1-x)^{2}-2(1-x)+1-\left(1-y+2 y^{3}\right)^{2} \\
& =2-4 x+2 x^{2}-2+2 x+1-\left(1-y+2 y^{3}\right)^{2}=2 x^{2}-2 x+1-\left(1-y+2 y^{3}\right)^{2} \\
& =f(A),
\end{aligned}
$$

hence:

$$
A \in \mathscr{C} \Longleftrightarrow f(A)=0 \Longleftrightarrow f\left(A^{\prime}\right)=0 \Longleftrightarrow A^{\prime} \in \mathscr{C} .
$$

b) See Figure 6.

Figure 6. Curve \mathscr{C} of Exercise 2 around O and $A(1,0)$, and the tangent lines (dashed) at O and A.
c) By symmetry, the equation of the tangent line to \mathscr{C} at $A(1,0)$ is:

$$
y=-x+1
$$

Note. We have included a zoomed out version of \mathscr{C} in Figure 7 .

Figure 7. Curve \mathscr{C} of Exercise 2.

Exercise 3.

1. We apply the Implicit Function Theorem:

- The function f is clearly of class C^{2} (and even of class C^{∞}),
- $f(0,0,0)=0$,
- $\partial_{2} f(0,0,0)=1 \neq 0$,
hence, by the Implicit Function Theorem, there exists an open subset U of \mathbb{R}^{2} containing $(0,0)$ and an open interval V containing 0 and a function $\varphi: U \rightarrow V$ of class C^{2} such that $\varphi(0,0)=0$ and

$$
\forall(x, z) \in U, \forall y \in V,(f(x, y, z)=0 \Longleftrightarrow y=\varphi(x, z) .
$$

2. a) $\overrightarrow{\operatorname{grad}} f(0,0,0)=(1,1,0)$, hence an equation of \mathscr{P} is:

$$
\mathscr{P}: x+y=0 .
$$

b)

$$
\partial_{1} \varphi(0,0)=-\frac{\partial_{1} f(0, \varphi(0,0), 0)}{\partial_{2} f(0, \varphi(0,0), 0)}=-1
$$

and

$$
\partial_{2} \varphi(0,0)=-\frac{\partial_{3} f(0, \varphi(0,0), 0)}{\partial_{2} f(0, \varphi(0,0), 0)}=0
$$

hence the first order Taylor-Young expansion of φ at $(0,0)$ is:

$$
\varphi(x, z) \underset{(x, z) \rightarrow(0,0)}{=}-x+o(\|(x, y)\|)
$$

hence an equation of the tangent plane to \mathscr{C} at $(0,0)$ is:

$$
\mathscr{P}: y=-x .
$$

3. From the "moreover" part of the Implicit Function Theorem, we know that, for all $(x, z) \in U$,

$$
\partial_{1} \varphi(x, z)=-\frac{\partial_{1} f(x, \varphi(x, z), z)}{\partial_{2} f(x, \varphi(x, z), z)}=-\frac{z \mathrm{e}^{\varphi(x, z)}+\mathrm{e}^{z}}{x z \mathrm{e}^{\varphi(x, z)}+\mathrm{e}^{z}}
$$

In particular,

$$
\partial_{1} \varphi(0, z)=-\frac{z \mathrm{e}^{\varphi(0, z)}+\mathrm{e}^{z}}{\mathrm{e}^{z}}=-z \mathrm{e}^{\varphi(0, z)-z}-1
$$

hence

$$
\partial_{2,1}^{2} \varphi(0,0)=\lim _{z \rightarrow 0} \frac{\varphi(0, z)-\varphi(0,0)}{z}=\lim _{z \rightarrow 0}-\mathrm{e}^{\varphi(0, z)-z}=-1 .
$$

Since φ is of class $C^{2}, \partial_{1,2}^{2} \varphi(0,0)=\partial_{2,1}^{2} \varphi(0,0)=-1$.

Exercise 4.

1. Since $1 / n \underset{n \rightarrow+\infty}{\longrightarrow} 0$,

$$
\frac{\mathrm{e}^{1 / n}-1}{n^{\alpha}} \underset{n \rightarrow+\infty}{\sim} \frac{1 / n}{n^{\alpha}}=\frac{1}{n^{\alpha+1}}>0 .
$$

Now, by Riemann, the series $\sum_{n} 1 / n^{\alpha+1}$ converges if and only $\alpha+1>1$, i.e., $\alpha>0$. Hence, by the equivalent test, the series converges if and only if $\alpha>0$.
2. Define

$$
\forall n \in \mathbb{N}^{*}, u_{n}=\frac{1}{\sqrt{n}+2 n}>0
$$

The series we're studying is $\sum_{n}(-1)^{n} u_{n}$, which is an alternating series. Now,

- $\lim _{n \rightarrow+\infty} u_{n}=0$,
- the sequence $\left(u_{n}\right)_{n \in \mathbb{N}^{*}}$ is decreasing,
hence, by the alternating series test, the series $\sum_{n}(-1)^{n} u_{n}$ converges.
Moreover, by the alternating series test, we know that the sign of R_{N} is that of u_{N+1}, that is:
- If N is odd, then $R_{N} \geq 0$,
- If N is even, then $R_{N} \leq 0$.

Moreover, we have:

$$
\left|R_{N}\right| \leq\left|u_{N+1}\right|=\frac{1}{\sqrt{N+1}+2(N+1)}
$$

3. a)

$$
\frac{1}{1+n^{2}} \underset{n \rightarrow+\infty}{\sim} \frac{1}{n^{2}}>0
$$

Now by Riemann, we know that the series $\sum_{n} 1 / n^{2}$ converges hence, by the equivalent test, the series we're studying is convergent.
b) Define the function

$$
\begin{array}{rl}
f: \mathbb{R}_{+} & \longrightarrow \\
t & \mathbb{R} \\
t & \longmapsto \frac{1}{1+t^{2}} .
\end{array}
$$

- the function f is non-increasing,

$$
\forall n \in \mathbb{N}, \frac{1}{1+n^{2}}=f(n)
$$

hence, by the Integral Comparison Test, for $N \in \mathbb{N}^{*}$,

$$
\int_{N+1}^{+\infty} f(t) \mathrm{d} t \leq S-S_{N}=\sum_{n=N+1}^{+\infty} f(n) \leq \int_{N}^{+\infty} f(t) \mathrm{d} t
$$

Now, for $a, b \in \mathbb{R}_{+}^{*}$,

$$
\int_{a}^{b} \frac{\mathrm{~d} t}{1+t^{2}}=\arctan (b)-\arctan (a)
$$

hence

$$
\int_{a}^{+\infty} \frac{\mathrm{d} t}{1+t^{2}}=\frac{\pi}{2}-\arctan (a)=\arctan \left(\frac{1}{a}\right)
$$

Hence, for $N \in \mathbb{N}^{*}$,

$$
\arctan \left(\frac{1}{N+1}\right) \leq S-S_{N}=\sum_{n=N+1}^{+\infty} f(n) \leq \arctan \left(\frac{1}{N}\right)
$$

