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Exercise 1.

1. We recognize a geometric series of ratio ez2, hence R = e−1/2.

2. We know that the radius of convergence R = 3 of the power series
∑

n(an + bn)z
n satisfies:

R = 3 ≥ min{Ra, Rb},

and that if Ra = 1 6= Rb then R = 3 = min{Ra, Rb}. This last statement being wrong since min{Ra, Rb} ≤ 1,
we conclude that Rb = 1.

3. For x ∈ (−2,+∞) we have:

x ln(2 + x) = x
(

ln
(

1 +
x

2

)

+ ln(2)
)

and we conclude that for all x ∈ (−2, 2],

x ln(2 + x) = x

(

+∞
∑

n=1

(−1)n+1

n

(x

2

)n

+ ln(2)

)

=
+∞
∑

n=1

(−1)n+1

2nn
xn+1 + x ln(2)

= x ln(2) +

+∞
∑

n=2

(−1)n

2n−1(n− 1)
xn.

4. a) The radius of convergence of this power series is 1 (magic lemma) and, for x ∈ (−1, 1) \ {0},

+∞
∑

n=0

xn

n+ 1
=

+∞
∑

n=1

xn−1

n

=
1

x

+∞
∑

n=1

xn

n

= −
1

x
ln(1− x)

and if x = 0, the value of the sum is 1. Hence

∀x ∈ (−1, 1),

+∞
∑

n=0

xn

n+ 1
=







−
ln(1− x)

x
if x 6= 0

1 if x = 0.

b) The radius of convergence of this power series is R = +∞. For x ∈ R,

+∞
∑

n=1

x2n

(n− 1)!
=

+∞
∑

n=0

x2(n+1)

n!

= x2
+∞
∑

n=0

x2n

n!

= x2
+∞
∑

n=0

(

x2
)n

n!

= x2ex
2

.

(This equality is also valid for x ∈ C).



Exercise 2.

1. Let x ∈ (−1, 1). Then

1

(1− x)2
=

d

dx

1

1− x

=
d

dx

(

+∞
∑

n=0

xn

)

=

+∞
∑

n=1

nxn−1,

hence
x3

(1− x)2
=

+∞
∑

n=1

nxn+2 =
+∞
∑

n=3

(n− 2)xn.

2. a) Let y be a function defined by a power series of radius R > 0, say

y : (−R,R) −→ R

x 7−→

+∞
∑

n=0

anx
n.

Then, for x ∈ (−R,R),

x2y′′(x) =
+∞
∑

n=0

n(n− 1)anx
n

hence

x2y′′(x)− 2y(x) =

+∞
∑

n=0

(

n2 − n− 2
)

anx
n =

+∞
∑

n=0

(n− 2)(n+ 1)anx
n.

Hence, by the identity theorem,

y is a solution of (E) ⇐⇒ a0 = a1 = 0, ∀n ≥ 3, (n− 2)(n+ 1)an = n− 2

⇐⇒ a0 = a1 = 0, ∀n ≥ 3, an =
1

n+ 1
.

(There are no constraints on a2).

By the magic lemma, we conclude that such solutions will have a radius of convergence of 1.

b) All our solutions satisfy a0 = a1 = 0, hence the graphs of the solutions pass through (0, 0) and have a
horizontal tangent line there. The relative position of the graphs of the solutions with respect to this
horizontal tangent line depends on a2:

• if a2 > 0: the graph of the corresponding solution lies (in a neighborhood of 0) above the tangent line
at (0, 0); see Figure 8a,

• if a2 < 0: the graph of the corresponding solution lies (in a neighborhood of 0) below the tangent line
at (0, 0); see Figure 8b,

• if a2 = 0: in this case we have to look at the next non-nil coefficient, which happens to be a3 = 1/4:
hence the graph of the corresponding solution crosses the tangent line at (0, 0): in a neighborhood
of 0, the graph is below the tangent line to the left of 0 and above the tangent line to right left of 0;
see Figure 8c.

c) The solutions y of (E) that possess a power series expansion have a radius of convergence of 1 and have
the form:

y(x) = −1−
x

2
+ cx2 + ϕ(x),

where c ∈ R and ϕ is the function obtained in Question 4a of Exercise 1:

∀x ∈ (−1, 1), ϕ(x) =







−
ln(1− x)

x
if x 6= 0

1 if x = 0.
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(a) case a2 > 0 (shown is a2 = 1)

0 x

y

(b) case a2 < 0 (shown is a2 = −1)

0 x

y

(c) case a2 = 0

Figure 8. Form of the solutions of Equation (E) that possess a power series expansion, in the cases a2 > 0,
a2 < 0 and a2 = 0.

Exercise 3.

1. Let α ∈ R
∗
+ \ {1/e}. We denote by (un)n∈N the general term of the series:

∀n ∈ N, un =
(nα)n

n!
.

Since the series
∑

n un has positive terms, we can use the ratio test: for n ∈ N,

un+1

un
=

(

(n+ 1)α
)n+1

(n+ 1)!

n!

(nα)n
=

(

n+ 1

n

)n

α −→
n→+∞

eα.

Hence:

• if α > 1/e, then the series diverges,

• if α < 1/e, then the series converges.

2. a) From the computation of Question 1,

lim
n→+∞

un+1

un
= 1,

hence we’re in the case where the ratio test fails.

b) Let n ∈ N. Then:
un+1

un
=

(

n+ 1

n

)n

e−1 = exp

(

n ln

(

1 +
1

n

)

− 1

)

.

Now,

ln

(

1 +
1

n

)

=
n→+∞

1

n
−

1

2n2
+ o

(

1

n2

)

,

hence

n ln

(

1 +
1

n

)

− 1 =
n→+∞

−
1

2n
+ o

(

1

n

)

,

hence
un+1

un
=

n→+∞
1−

1

2n
+ o

(

1

n

)

.

c) i) For n ∈ N
∗,

vn+1 − vn = ln
(

(n+ 1)un+1

)

− ln(nun)

= ln

(

n+ 1

n

un+1

un

)

∼
n→+∞

n+ 1

n

un+1

un
− 1 since

n+ 1

n

un+1

un
−→

n→+∞
1



Now

n+ 1

n

un+1

un
− 1 =

n→+∞

(

1 +
1

n

)(

1−
1

2n
+ o

(

1

n

))

− 1

=
n→+∞

1 +
1

2n
+ o

(

1

n

)

− 1 =
1

2n
+ o

(

1

n

)

∼
n→+∞

1

2n
.

Hence

vn+1 − vn ∼
n→+∞

1

2n
.

ii) By the equivalent test, since 1/2n > 0 is the general term of a divergent series, we conclude that the
series

∑

n(vn+1 − vn) diverges.

iii) The series
∑

n(vn+1 − vn) is a series with positive terms (at least from a certain index), as shown by
the equivalent obtained in Question 2c)i), hence the sequence of the partial sums is increasing; this
sequence being divergent, its limit must be +∞:

lim
N→+∞

N
∑

n=1

(vn+1 − vn) = +∞.

Now, for N ∈ N
∗,

N
∑

n=1

(vn+1 − vn) = vN+1 − v1,

and we conclude that lim
N→+∞

vN = +∞.

d) Since vn −→
n→+∞

+∞, we conclude that nun = evn −→
n→+∞

+∞. Hence there exists N ∈ N such that

∀n ≥ N, nun ≥ 1,

i.e.,

∀n ≥ N, un ≥
1

n
> 0,

and we conclude, by the comparison test, that the series
∑

n un diverges.

Exercise 4.

1.

A =





0 1 0
1 1 −2
0 −2 2



 .

2.
ϕ : R

3 × R
3 −→ R

(

(x, y, z), (x′, y′, z′)
)

7−→ xy′ + x′y + yy′ − 2(yz′ + y′z) + 2zz′.

3. We need to evaluate ϕ at the vectors of C :

ϕ(u1, u1) = 1, ϕ(u1, u2) = 0, ϕ(u1, u3) = 0, ϕ(u2, u2) = −1, ϕ(u2, u3) = 0, ϕ(u3, u3) = 2.

(Note that since ϕ is symmetric, we only have 6 terms to compute). Hence

A′ =





1 0 0
0 −1 0
0 0 2



 .

4. The change of basis matrix is:

[C ]std =





1 0 0
1 1 0
1 1 1



 .



The change of basis formula is:
A′ = [ϕ]C =

t
[C ]stdA[C ]std,

and we obtain:

A′ =





1 1 1
0 1 1
0 0 1









0 1 0
1 1 −2
0 −2 2









1 0 0
1 1 0
1 1 1



 =





1 1 1
0 1 1
0 0 1









1 1 0
0 −1 −2
0 0 2



 =





1 0 0
0 −1 0
0 0 2



 .

(insert happy smiley here).

5. Let (x, y, z) ∈ R
3. Then:

(x, y, z) ∈ {u1 + u2}
⊥

⇐⇒ ϕ
(

(x, y, z), u1 + u2
)

= 0 ⇐⇒ ϕ
(

(x, y, z), (1, 2, 2)
)

= 0 ⇐⇒ 2x− y = 0.

Hence
F⊥ =

{

(x, y, z) ∈ R
3
∣

∣ 2x− y = 0
}

.

Exercise 5.

1. Let u, v, w ∈ E and let λ ∈ R. Then:

ψ(u+ λv,w) = ϕ
(

u+ λv, f(w)
)

= ϕ
(

u, f(w)
)

+ λϕ
(

v, f(w)
)

since ϕ is bilinear

= ψ(u,w) + λψ(v, w),

hence ψ is linear with respect to its first argument, and

ψ(u, v + λw) = ϕ
(

u, f(v + λw)
)

= ϕ
(

u, f(v) + λf(w)
)

since f is linear

= ϕ
(

u, f(v)
)

+ λϕ
(

u, f(w)
)

since ϕ is bilinear

= ψ(u, v) + λψ(u,w),

hence ψ is linear with respect to its second argument.

Hence ψ is a bilinear form on E.

2. For u, v ∈ E,
t
[u]BB[v]B = ψ(u, v) = ϕ

(

u, f(v)
)

=
t
[u]BA

[

f(v)
]

B
=

t
[u]BAM

[

v
]

B
.

We conclude (by uniqueness of the matrix of a bilinear form) that B = AM .


