Exercise 1.

1. We recognize a geometric series of ratio e z^{2}, hence $R=\mathrm{e}^{-1 / 2}$.
2. We know that the radius of convergence $R=3$ of the power series $\sum_{n}\left(a_{n}+b_{n}\right) z^{n}$ satisfies:

$$
R=3 \geq \min \left\{R_{a}, R_{b}\right\}
$$

and that if $R_{a}=1 \neq R_{b}$ then $R=3=\min \left\{R_{a}, R_{b}\right\}$. This last statement being wrong since $\min \left\{R_{a}, R_{b}\right\} \leq 1$, we conclude that $R_{b}=1$.
3. For $x \in(-2,+\infty)$ we have:

$$
x \ln (2+x)=x\left(\ln \left(1+\frac{x}{2}\right)+\ln (2)\right)
$$

and we conclude that for all $x \in(-2,2]$,

$$
\begin{aligned}
x \ln (2+x) & =x\left(\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n}\left(\frac{x}{2}\right)^{n}+\ln (2)\right) \\
& =\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{2^{n} n} x^{n+1}+x \ln (2) \\
& =x \ln (2)+\sum_{n=2}^{+\infty} \frac{(-1)^{n}}{2^{n-1}(n-1)} x^{n} .
\end{aligned}
$$

4. a) The radius of convergence of this power series is 1 (magic lemma) and, for $x \in(-1,1) \backslash\{0\}$,

$$
\begin{aligned}
\sum_{n=0}^{+\infty} \frac{x^{n}}{n+1} & =\sum_{n=1}^{+\infty} \frac{x^{n-1}}{n} \\
& =\frac{1}{x} \sum_{n=1}^{+\infty} \frac{x^{n}}{n} \\
& =-\frac{1}{x} \ln (1-x)
\end{aligned}
$$

and if $x=0$, the value of the sum is 1 . Hence

$$
\forall x \in(-1,1), \sum_{n=0}^{+\infty} \frac{x^{n}}{n+1}= \begin{cases}-\frac{\ln (1-x)}{x} & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{cases}
$$

b) The radius of convergence of this power series is $R=+\infty$. For $x \in \mathbb{R}$,

$$
\begin{aligned}
\sum_{n=1}^{+\infty} \frac{x^{2 n}}{(n-1)!} & =\sum_{n=0}^{+\infty} \frac{x^{2(n+1)}}{n!} \\
& =x^{2} \sum_{n=0}^{+\infty} \frac{x^{2 n}}{n!} \\
& =x^{2} \sum_{n=0}^{+\infty} \frac{\left(x^{2}\right)^{n}}{n!} \\
& =x^{2} \mathrm{e}^{x^{2}}
\end{aligned}
$$

(This equality is also valid for $x \in \mathbb{C}$).

Exercise 2.

1. Let $x \in(-1,1)$. Then

$$
\begin{aligned}
\frac{1}{(1-x)^{2}} & =\frac{\mathrm{d}}{\mathrm{~d} x} \frac{1}{1-x} \\
& =\frac{\mathrm{d}}{\mathrm{~d} x}\left(\sum_{n=0}^{+\infty} x^{n}\right) \\
& =\sum_{n=1}^{+\infty} n x^{n-1},
\end{aligned}
$$

hence

$$
\frac{x^{3}}{(1-x)^{2}}=\sum_{n=1}^{+\infty} n x^{n+2}=\sum_{n=3}^{+\infty}(n-2) x^{n} .
$$

2. a) Let y be a function defined by a power series of radius $R>0$, say

$$
\begin{aligned}
y:(-R, R) & \longrightarrow \mathbb{R} \\
x & \longmapsto \sum_{n=0}^{+\infty} a_{n} x^{n} .
\end{aligned}
$$

Then, for $x \in(-R, R)$,

$$
x^{2} y^{\prime \prime}(x)=\sum_{n=0}^{+\infty} n(n-1) a_{n} x^{n}
$$

hence

$$
x^{2} y^{\prime \prime}(x)-2 y(x)=\sum_{n=0}^{+\infty}\left(n^{2}-n-2\right) a_{n} x^{n}=\sum_{n=0}^{+\infty}(n-2)(n+1) a_{n} x^{n} .
$$

Hence, by the identity theorem,

$$
\begin{aligned}
y \text { is a solution of }(\mathrm{E}) & \Longleftrightarrow a_{0}=a_{1}=0, \forall n \geq 3,(n-2)(n+1) a_{n}=n-2 \\
& \Longleftrightarrow a_{0}=a_{1}=0, \forall n \geq 3, a_{n}=\frac{1}{n+1} .
\end{aligned}
$$

(There are no constraints on a_{2}).
By the magic lemma, we conclude that such solutions will have a radius of convergence of 1 .
b) All our solutions satisfy $a_{0}=a_{1}=0$, hence the graphs of the solutions pass through $(0,0)$ and have a horizontal tangent line there. The relative position of the graphs of the solutions with respect to this horizontal tangent line depends on a_{2} :

- if $a_{2}>0$: the graph of the corresponding solution lies (in a neighborhood of 0) above the tangent line at $(0,0)$; see Figure 8a,
- if $a_{2}<0$: the graph of the corresponding solution lies (in a neighborhood of 0) below the tangent line at $(0,0)$; see Figure 8 b ,
- if $a_{2}=0$: in this case we have to look at the next non-nil coefficient, which happens to be $a_{3}=1 / 4$: hence the graph of the corresponding solution crosses the tangent line at $(0,0)$: in a neighborhood of 0 , the graph is below the tangent line to the left of 0 and above the tangent line to right left of 0 ; see Figure 8c.
c) The solutions y of (E) that possess a power series expansion have a radius of convergence of 1 and have the form:

$$
y(x)=-1-\frac{x}{2}+c x^{2}+\varphi(x)
$$

where $c \in \mathbb{R}$ and φ is the function obtained in Question 4a of Exercise 1:

$$
\forall x \in(-1,1), \varphi(x)= \begin{cases}-\frac{\ln (1-x)}{x} & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{cases}
$$

Figure 8. Form of the solutions of Equation (E) that possess a power series expansion, in the cases $a_{2}>0$, $a_{2}<0$ and $a_{2}=0$.

Exercise 3.

1. Let $\alpha \in \mathbb{R}_{+}^{*} \backslash\{1 / \mathrm{e}\}$. We denote by $\left(u_{n}\right)_{n \in \mathbb{N}}$ the general term of the series:

$$
\forall n \in \mathbb{N}, u_{n}=\frac{(n \alpha)^{n}}{n!}
$$

Since the series $\sum_{n} u_{n}$ has positive terms, we can use the ratio test: for $n \in \mathbb{N}$,

$$
\frac{u_{n+1}}{u_{n}}=\frac{((n+1) \alpha)^{n+1}}{(n+1)!} \frac{n!}{(n \alpha)^{n}}=\left(\frac{n+1}{n}\right)^{n} \alpha \underset{n \rightarrow+\infty}{\longrightarrow} \mathrm{e} \alpha .
$$

Hence:

- if $\alpha>1 / \mathrm{e}$, then the series diverges,
- if $\alpha<1 / \mathrm{e}$, then the series converges.

2. a) From the computation of Question 1,

$$
\lim _{n \rightarrow+\infty} \frac{u_{n+1}}{u_{n}}=1
$$

hence we're in the case where the ratio test fails.
b) Let $n \in \mathbb{N}$. Then:

$$
\frac{u_{n+1}}{u_{n}}=\left(\frac{n+1}{n}\right)^{n} \mathrm{e}^{-1}=\exp \left(n \ln \left(1+\frac{1}{n}\right)-1\right) .
$$

Now,

$$
\ln \left(1+\frac{1}{n}\right) \underset{n \rightarrow+\infty}{=} \frac{1}{n}-\frac{1}{2 n^{2}}+o\left(\frac{1}{n^{2}}\right)
$$

hence

$$
n \ln \left(1+\frac{1}{n}\right)-1 \underset{n \rightarrow+\infty}{=}-\frac{1}{2 n}+o\left(\frac{1}{n}\right)
$$

hence

$$
\frac{u_{n+1}}{u_{n}} \underset{n \rightarrow+\infty}{=} 1-\frac{1}{2 n}+o\left(\frac{1}{n}\right) .
$$

c) i) For $n \in \mathbb{N}^{*}$,

$$
\begin{aligned}
v_{n+1}-v_{n} & =\ln \left((n+1) u_{n+1}\right)-\ln \left(n u_{n}\right) \\
& =\ln \left(\frac{n+1}{n} \frac{u_{n+1}}{u_{n}}\right) \\
& \sim \sim(n+1 \\
n \rightarrow+\infty & \frac{u_{n+1}}{u_{n}}-1
\end{aligned} \quad \text { since } \frac{n+1}{n} \frac{u_{n+1}}{u_{n}} \underset{n \rightarrow+\infty}{\longrightarrow} 11 ~ l
$$

Now

$$
\begin{aligned}
\frac{n+1}{n} \frac{u_{n+1}}{u_{n}}-1 & \underset{n \rightarrow+\infty}{=}\left(1+\frac{1}{n}\right)\left(1-\frac{1}{2 n}+o\left(\frac{1}{n}\right)\right)-1 \\
& =1+\frac{1}{2 n}+o\left(\frac{1}{n}\right)-1=\frac{1}{2 n}+o\left(\frac{1}{n}\right) \\
& \underset{n \rightarrow+\infty}{\sim} \frac{1}{2 n} .
\end{aligned}
$$

Hence

$$
v_{n+1}-v_{n} \underset{n \rightarrow+\infty}{\sim} \frac{1}{2 n} .
$$

ii) By the equivalent test, since $1 / 2 n>0$ is the general term of a divergent series, we conclude that the series $\sum_{n}\left(v_{n+1}-v_{n}\right)$ diverges.
iii) The series $\sum_{n}\left(v_{n+1}-v_{n}\right)$ is a series with positive terms (at least from a certain index), as shown by the equivalent obtained in Question 2c)i), hence the sequence of the partial sums is increasing; this sequence being divergent, its limit must be $+\infty$:

$$
\lim _{N \rightarrow+\infty} \sum_{n=1}^{N}\left(v_{n+1}-v_{n}\right)=+\infty
$$

Now, for $N \in \mathbb{N}^{*}$,

$$
\sum_{n=1}^{N}\left(v_{n+1}-v_{n}\right)=v_{N+1}-v_{1}
$$

and we conclude that $\lim _{N \rightarrow+\infty} v_{N}=+\infty$.
d) Since $v_{n} \underset{n \rightarrow+\infty}{\longrightarrow}+\infty$, we conclude that $n u_{n}=\mathrm{e}^{v_{n}} \underset{n \rightarrow+\infty}{\longrightarrow}+\infty$. Hence there exists $N \in \mathbb{N}$ such that

$$
\forall n \geq N, n u_{n} \geq 1
$$

i.e.,

$$
\forall n \geq N, u_{n} \geq \frac{1}{n}>0
$$

and we conclude, by the comparison test, that the series $\sum_{n} u_{n}$ diverges.

Exercise 4.

1.

$$
A=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 1 & -2 \\
0 & -2 & 2
\end{array}\right)
$$

2.

$$
\varphi: \begin{array}{clc}
\mathbb{R}^{3} \times \mathbb{R}^{3} & \longrightarrow & \mathbb{R} \\
\left((x, y, z),\left(x^{\prime}, y^{\prime}, z^{\prime}\right)\right) & \longmapsto x y^{\prime}+x^{\prime} y+y y^{\prime}-2\left(y z^{\prime}+y^{\prime} z\right)+2 z z^{\prime} .
\end{array}
$$

3. We need to evaluate φ at the vectors of \mathscr{C} :

$$
\varphi\left(u_{1}, u_{1}\right)=1, \quad \varphi\left(u_{1}, u_{2}\right)=0, \quad \varphi\left(u_{1}, u_{3}\right)=0, \quad \varphi\left(u_{2}, u_{2}\right)=-1, \quad \varphi\left(u_{2}, u_{3}\right)=0, \quad \varphi\left(u_{3}, u_{3}\right)=2
$$

(Note that since φ is symmetric, we only have 6 terms to compute). Hence

$$
A^{\prime}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

4. The change of basis matrix is:

$$
[\mathscr{C}]_{\mathrm{std}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right)
$$

The change of basis formula is:

$$
A^{\prime}=[\varphi]_{\mathscr{C}}={ }^{t}[\mathscr{C}]_{\mathrm{std}} A[\mathscr{C}]_{\mathrm{std}}
$$

and we obtain:

$$
A^{\prime}=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 1 & -2 \\
0 & -2 & 2
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & -1 & -2 \\
0 & 0 & 2
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

(insert happy smiley here).
5. Let $(x, y, z) \in \mathbb{R}^{3}$. Then:

$$
(x, y, z) \in\left\{u_{1}+u_{2}\right\}^{\perp} \Longleftrightarrow \varphi\left((x, y, z), u_{1}+u_{2}\right)=0 \Longleftrightarrow \varphi((x, y, z),(1,2,2))=0 \Longleftrightarrow 2 x-y=0
$$

Hence

$$
F^{\perp}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid 2 x-y=0\right\} .
$$

Exercise 5.

1. Let $u, v, w \in E$ and let $\lambda \in \mathbb{R}$. Then:

$$
\begin{array}{rlr}
\psi(u+\lambda v, w) & =\varphi(u+\lambda v, f(w)) \\
& =\varphi(u, f(w))+\lambda \varphi(v, f(w)) & \text { since } \varphi \text { is bilinear } \\
& =\psi(u, w)+\lambda \psi(v, w)
\end{array}
$$

hence ψ is linear with respect to its first argument, and

$$
\begin{array}{rlr}
\psi(u, v+\lambda w) & =\varphi(u, f(v+\lambda w)) & \\
& =\varphi(u, f(v)+\lambda f(w)) & \text { since } f \text { is linear } \\
& =\varphi(u, f(v))+\lambda \varphi(u, f(w)) & \text { since } \varphi \text { is bilinear } \\
& =\psi(u, v)+\lambda \psi(u, w) &
\end{array}
$$

hence ψ is linear with respect to its second argument.
Hence ψ is a bilinear form on E.
2. For $u, v \in E$,

$$
{ }^{t}[u]_{\mathscr{B}} B[v]_{\mathscr{B}}=\psi(u, v)=\varphi(u, f(v))={ }^{t}[u]_{\mathscr{B}} A[f(v)]_{\mathscr{B}}={ }^{t}[u]_{\mathscr{B}} A M[v]_{\mathscr{B}} .
$$

We conclude (by uniqueness of the matrix of a bilinear form) that $B=A M$.

