Exercise 1.

1. We first determine the critical points of f on \mathbb{R}^{2} : let $(x, y) \in \mathbb{R}^{2}$. Then

$$
\begin{aligned}
(x, y) \text { is a critical point of } f & \Longleftrightarrow\left\{\begin{array}{l}
3 y-3 x^{2}=0 \\
3 x-3 y^{2}=0
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{array}{l}
y=x^{2} \\
x-x^{4}=0
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{array}{l}
y=x^{2} \\
x\left(1-x^{3}\right)=0
\end{array}\right. \\
& \Longleftrightarrow \begin{cases}y=0 \\
x=0 & \text { or }\left\{\begin{array}{l}
y=1 \\
x=1
\end{array}\right.\end{cases}
\end{aligned}
$$

Hence f possesses two critical points on \mathbb{R}^{2}, namely, $(0,0)$ and $(1,1)$.
We now study the nature of these critical points. The Hessian matrix of f at a point $(x, y) \in \mathbb{R}^{2}$ is:

$$
H_{(x, y)} f=\left(\begin{array}{cc}
-6 x & 3 \\
3 & -6 y
\end{array}\right) .
$$

- At $(0,0)$:

$$
H_{(0,0)} f=\left(\begin{array}{ll}
0 & 3 \\
3 & 0
\end{array}\right)
$$

Since $\operatorname{det} H_{(0,0)} f=-9<0$, we conclude that $\operatorname{sign} H_{(0,0)} f=(1,1)$, hence f has a saddle point at $(0,0)$ hence f has no local extreme value at $(0,0)$.

- At $(1,1)$:

$$
H_{(1,1)} f=\left(\begin{array}{cc}
-6 & 3 \\
3 & -6
\end{array}\right) .
$$

Since $\operatorname{det} H_{(1,1)} f=27>0$ and $\operatorname{tr} H_{(1,1)} f=-12<0$, we conclude that $\operatorname{sign} H_{(1,1)} f=(0,2)$, hence f has a local maximum at $(1,1)$.

Conclusion: f as a unique local maximum at $(1,1)$ and no local minimum.
2. Since $f(x, 0)=-x^{3}+8 \underset{x \rightarrow+\infty}{\longrightarrow}=-\infty, f$ is not bounded from below, and since $f(x, 0)=-x^{3}+8 \underset{x \rightarrow-\infty}{\longrightarrow}=+\infty$, f is not bounded from above. We conclude that f has no global extreme values on \mathbb{R}^{2}.
3. The square S is a closed and bounded set, and f is continuous on S hence, by the Extreme Value Theorem, the restriction of f to S is bounded and attains its bounds. We study the extreme values of f on ∂S, that we divide in four parts:

- On the lower side of S, namely $[0,2] \times\{0\}$: define the function

$$
\begin{aligned}
g:[0,2] & \longrightarrow \\
x & \longmapsto f(x, 0)=-x^{3}+8 .
\end{aligned}
$$

Clearly, g is decreasing, hence

$$
\min g=g(2)=0 \quad \text { and } \quad \max g=g(0)=8
$$

The minimum corresponds to the point $(2,0)$ and the maximum to the point $(0,0)$.

- On the upper side of S, namely $[0,2] \times\{1\}$: define the function

$$
\begin{aligned}
g: \quad[0,2] & \longrightarrow \\
x & \longmapsto f(x, 2)=-x^{3}+6 x .
\end{aligned}
$$

For $x \in[0,2], g^{\prime}(x)=-3 x^{2}+6$, hence g is increasing on $[0, \sqrt{2}]$ and decreasing on $[\sqrt{2}, 2]$, hence

$$
\min g=\min \{g(0), g(2)\}=0 \quad \text { and } \quad \max g=g(\sqrt{2})=4 \sqrt{2}
$$

The minimum corresponds to the point $(0,2)$ and the maximum to the point $(\sqrt{2}, 2)$.

- On the left side of S, namely $\{0\} \times[0,2]$: define the function

$$
\begin{aligned}
g:[0,2] & \longrightarrow \mathbb{R} \\
y & \longmapsto f(0, y)=-y^{3}+8
\end{aligned}
$$

hence (similar to the lower side):

$$
\min g=0 \quad \text { and } \quad \max g=8
$$

The minimum corresponds to the point $(0,2)$ and the maximum to the point $(0,0)$.

- On the right side of S, namely $\{2\} \times[0,2]$: define the function

$$
\begin{aligned}
g:[0,2] & \longrightarrow \mathbb{R} \\
y & \longmapsto f(2, y)=-y^{3}+6 y,
\end{aligned}
$$

hence (similar to the upper side):

$$
\min g=0 \quad \text { and } \quad \max g=4 \sqrt{2}
$$

The minimum corresponds to the point $(2,0)$ and the maximum to the point $(2, \sqrt{2})$.
At the critical point $(1,1)$, the value of f is: $f(1,1)=9$ (which is greater than the maximum of f on ∂S). Conclusion:

$$
\min _{S} f=0 \quad \text { and } \quad \max _{S} f=9
$$

and the minimum is attained at $(0,0)$ and the maximum at $(1,1)$.

Exercise 2.

1. The matrix of q in the standard basis of \mathbb{R}^{2} is:

$$
A=[q]_{\mathrm{std}}=\left(\begin{array}{cc}
4 & -\sqrt{3} \\
-\sqrt{3} & 2
\end{array}\right)
$$

The characteristic polynomial of A is:

$$
\chi_{A}(X)=X^{2}-6 X+5=(X-1)(X-5)
$$

Hence the eigenvalues of A are 1 and 5 (both of multiplicity 1). The equation of the eigenspace of A associated with 1 is:

$$
E_{1}: 3 x-\sqrt{3} y=0
$$

and we may choose

$$
X_{1}=\binom{1 / 2}{\sqrt{3} / 2}
$$

as an eigenvector of A associated with 1 . We set

$$
x_{1}=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)
$$

Notice that $\left\|x_{1}\right\|_{2}=1$. To obtain an eigenvector of A associated with 5, we can repeat the procedure, or observe that since A is a real symmetric matrix, E_{5} is orthogonal to E_{1}, hence

$$
X_{5}=\binom{-\sqrt{3} / 2}{1 / 2}
$$

is an eigenvector of A associated with 5 . We set

$$
x_{5}=\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)
$$

Notice that $\left\|x_{5}\right\|_{2}=1$. We now conclude that the family $\mathscr{B}=\left(x_{1}, x_{5}\right)$ is an orthonormal basis of \mathbb{R}^{2} (with respect to the standard dot product) Moreover, since

$$
[q]_{\mathscr{B}}=\left(\begin{array}{ll}
1 & 0 \\
0 & 5
\end{array}\right)
$$

is diagonal, we conclude that \mathscr{B} is an orthogonal family with respect to φ.
2. Let $(x, y) \in \mathbb{R}^{2}$ and let x^{\prime}, y^{\prime} be the coefficients of the coordinates of (x, y) in the basis \mathscr{B} :

$$
[(x, y)]_{\mathscr{B}}=\binom{x^{\prime}}{y^{\prime}}
$$

Then

$$
(x, y) \in(C) \Longleftrightarrow q(x, y)=25 \Longleftrightarrow\left(x^{\prime}\right)^{2}+5\left(y^{\prime}\right)^{2}=25
$$

We can now plot (C) in the frame $(0, \mathscr{B})$: see Figure 9. And we deduce (C) in the standard frame $\left(0, e_{x}, e_{y}\right)$: see Figure 10.

Exercise 3.

1. Since A is a real symmetric matrix, there exists an orthogonal matrix P and a diagonal matrix D such that $A=P D^{t} P$ (Spectral Theorem).
2. 3 is an eigenvalue of A since

$$
\operatorname{rk}\left(A-3 I_{3}\right)=\operatorname{rk}\left(\begin{array}{ccc}
1 & -1 & 2 \\
-1 & 1 & 2 \\
-2 & 2 & 4
\end{array}\right)=1
$$

By the Rank-Nullity Theorem, we deduce that 3 has multiplicity 2. Using the trace, we conclude that the other eigenvalue of A is 9 (of multiplicity 1). Since A is a real symmetric matrix, we know that $E_{3} \perp E_{9}$, and we use this fact in the sequel.
An equation of E_{3} is

$$
E_{3}: x-y-2 z=0
$$

from which we deduce that $X_{9}=\left(\begin{array}{c}1 \\ -1 \\ -2\end{array}\right)$ is an eigenvector of A associated with the eigenvalue 9 . We choose a vector of E_{3}, say

$$
X_{3}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

and using a cross product, we find another eigenvector of A associated with 3:

$$
X_{3}^{\prime}=X_{9} \times X_{3}=\left(\begin{array}{c}
1 \\
-1 \\
-2
\end{array}\right) \times\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
2 \\
-2 \\
2
\end{array}\right)
$$

To obtain P, we divide X_{3}, X_{3}^{\prime} and X_{9} by their norm and stack them together:

$$
P=\left(\begin{array}{ccc}
1 / \sqrt{2} & 1 / \sqrt{3} & 1 / \sqrt{6} \\
1 / \sqrt{2} & -1 \sqrt{3} & -1 \sqrt{6} \\
0 & 1 / \sqrt{3} & -2 \sqrt{6}
\end{array}\right)
$$

And if we set

$$
D=\left(\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 9
\end{array}\right)
$$

we have $A=P D^{t} P$.

Figure 9. The conic (C) of Exercise 2 in the frame (O, \mathscr{B}).

Figure 10. The conic (C) of Exercise 2 in the standard frame $\left(O, e_{x}, e_{y}\right)$.
3. a) Since the signature of q is $(3,0)$, we conclude that q is positive definite, hence \sqrt{q} is a norm on \mathbb{R}^{3}. We then recognize S as the ball of \mathbb{R}^{3} (with respect to the norm \sqrt{q}) of radius 2; hence S is closed and bounded.
b) Since $[q]_{\mathscr{B}}=D \neq I_{3}$, we conclude that \mathscr{B} is not an orthonormal family with respect to φ.
c) First recall the relation between $X=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ and $X^{\prime}=\left(\begin{array}{c}x^{\prime} \\ y^{\prime} \\ z^{\prime}\end{array}\right)$:

$$
X=P X^{\prime}
$$

Then:

$$
x^{2}+y^{2}+z^{2}={ }^{t} X X={ }^{t}\left(P X^{\prime}\right) P X^{\prime}={ }^{t} X^{\prime t} P P X^{\prime}={ }^{t} X^{\prime} X^{\prime}=\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}+\left(z^{\prime}\right)^{2} .
$$

d) Let $(x, y, z) \in \mathbb{R}^{3}$ and define X and X^{\prime} as above, i.e.,

$$
X=\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right) \quad \text { and } \quad X^{\prime}=\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)={ }^{t} P X
$$

Then

$$
(x, y, z) \in S \Longleftrightarrow 3\left(x^{\prime}\right)^{2}+3\left(y^{\prime}\right)^{2}+9\left(z^{\prime}\right)^{2} \leq 4
$$

Hence, if we define

$$
S^{\prime}=\left\{\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in \mathbb{R}^{3} \mid 3\left(x^{\prime}\right)^{2}+3\left(y^{\prime}\right)^{2}+9\left(z^{\prime}\right)^{2} \leq 4\right\}
$$

we have:

$$
\sup _{(x, y, z) \in S} x^{2}+y^{2}+z^{2}=\sup _{\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in S^{\prime}}\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}+\left(z^{\prime}\right)^{2} .
$$

Let $\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in S^{\prime}$. Then:

$$
\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}+\left(z^{\prime}\right)^{2}=\frac{1}{3}\left(3\left(x^{\prime}\right)^{2}+3\left(y^{\prime}\right)^{2}+3\left(z^{\prime}\right)^{2}\right) \leq \frac{1}{3}\left(3\left(x^{\prime}\right)^{2}+3\left(y^{\prime}\right)^{2}+9\left(z^{\prime}\right)^{2}\right) \leq \frac{4}{3}
$$

At this point we can conclude that

$$
\sup _{\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in S^{\prime}}\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}+\left(z^{\prime}\right)^{2} \leq \frac{4}{3}
$$

Now since $(2 / \sqrt{3}, 0,0) \in S^{\prime}$,

$$
\sup _{\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in S^{\prime}}\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}+\left(z^{\prime}\right)^{2} \geq\left(\frac{2}{\sqrt{3}}\right)^{2}+0^{2}+0^{2}=\frac{4}{3}
$$

and we conclude that the value of this supremum is $4 / 3$.

Exercise 4.

1. a) See Figure 11.

Figure 11. Graph of φ_{1} of Exercise 4.
b)

$$
\left\|\varphi_{1}\right\|^{2}=\int_{0}^{1} \varphi_{1}(t)^{2} \mathrm{~d} t=\int_{0}^{1 / 4} 4 \mathrm{~d} t=1
$$

hence $\left\|\varphi_{1}\right\|=1$.

$$
\left\langle\varphi_{1}, \varphi_{2}\right\rangle=\int_{0}^{1} \varphi_{1}(t) \varphi_{2}(t) \mathrm{d} t=0
$$

since $\forall t \in[0,1), \varphi_{1}(t) \varphi_{2}(t)=0$.
2. Clearly,

$$
\psi_{1}=\frac{1}{\sqrt{2}}\left(\varphi_{1}+\varphi_{2}\right) \quad \text { and } \quad \psi_{2}=\frac{1}{\sqrt{2}}\left(\varphi_{3}+\varphi_{4}\right)
$$

hence $\psi_{1}, \psi_{2} \in E$.
3. We notice that $\left(\psi_{1}, \psi_{2}\right)$ is an orthonormal basis of G hence:

$$
g=\left\langle f, \psi_{1}\right\rangle \psi_{1}+\left\langle f, \psi_{2}\right\rangle \psi_{2}
$$

Since \mathscr{B} is an orthonormal family, we obtain:

$$
c_{1}=\left\langle f, \psi_{1}\right\rangle=\frac{1}{\sqrt{2}}\left(\left\langle 5 \varphi_{1}-\varphi_{2}+2 \varphi_{3}+4 \varphi_{4}, \varphi_{1}+\varphi_{2}\right\rangle=\frac{1}{\sqrt{2}}(5-1)=\frac{4}{\sqrt{2}}=2 \sqrt{2} .\right.
$$

and

$$
c_{2}=\left\langle f, \psi_{2}\right\rangle=\frac{1}{\sqrt{2}}\left(\left\langle 5 \varphi_{1}-\varphi_{2}+2 \varphi_{3}+4 \varphi_{4}, \varphi_{3}+\varphi_{4}\right\rangle=\frac{1}{\sqrt{2}}(2+4)=\frac{6}{\sqrt{2}}=3 \sqrt{2} .\right.
$$

4. See Figure 12.

Figure 12. Graph of f (in black) and of g (in red) of Exercise 4.
5. a) Since

$$
\inf _{\left(a_{1}, a_{2}\right) \in \mathbb{R}^{2}}\left\|f-\left(a_{1} \phi_{1}+a_{2} \phi_{2}\right)\right\|=\|f-g\|,
$$

g is the best approximation (in the sense of $\|\cdot\|$) of f in G. Hence the possible loss of information is minimum when we transmit g.
b)

- If we choose $h=\psi_{3}$, then

$$
p_{H}(f)=g+\left\langle f, \psi_{3}\right\rangle \psi_{3}=g+\frac{1}{\sqrt{2}}(-1-5) \psi_{3}=g-3 \sqrt{2} \psi_{3} .
$$

We know that $f-p_{H}(f)$ and $p_{H}(f)$ are orthogonal with respect to $\langle\cdot, \cdot\rangle$ hence, by the Pythagorean Theorem (and since ($\psi_{1}, \psi_{2}, \psi_{3}$) is an orthonormal basis):

$$
\left\|f-p_{H}(f)\right\|^{2}=\|f\|^{2}-\left\|p_{H}(f)\right\|^{2}=46-(8+18+18)=46-44=2
$$

- If we choose $h=\psi_{4}$, then

$$
p_{H}(f)=g+\left\langle f, \psi_{4}\right\rangle \psi_{4}=g+\frac{1}{\sqrt{2}}(4-2) \psi_{3}=g+2 \sqrt{2} \psi_{3} .
$$

Again,

$$
\left\|f-p_{H}(f)\right\|^{2}=\|f\|^{2}-\left\|p_{H}(f)\right\|^{2}=46-(8+18+8)=46-34=10
$$

The distance between f and $p_{H}(f)$ is smaller in the first case, hence it's better to choose $h=\psi_{3}$.

