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1. We first determine the critical points of f on R?: let (x,y) € R%. Then

3y —3z2=0
x,y) is a critical point of f <—
(z,y) p f {3x3y2_0
_ .2
= {y_m4
r—2*=0
_ .2
— V=7
2(l1—2%) =0

< y=0 or y:1
r=0 z=1.

Hence f possesses two critical points on R?, namely, (0,0) and (1,1).

We now study the nature of these critical points. The Hessian matrix of f at a point (z,y) € R? is:

—6x 3
H(Cﬂvy)f: ( 3 —Gy)'

e At (0,0):

Since det H(o,0)f = —9 < 0, we conclude that sign H ) f = (1,1), hence f has a saddle point at (0,0)
hence f has no local extreme value at (0,0).

e At (1,1):
-6 3
H(l,l)f = < 3 _6> .

Since det H(y,1)f = 27 > 0 and tr H(; 1y f = —12 < 0, we conclude that sign H(; 1)f = (0,2), hence f
has a local maximum at (1,1).

Conclusion: f as a unique local maximum at (1,1) and no local minimum.

2. Since f(x,0) = —23+8 —+> = —00, f is not bounded from below, and since f(z,0) = —23+8 — = 400,
T—>+00 T——00
f is not bounded from above. We conclude that f has no global extreme values on R2.

3. The square S is a closed and bounded set, and f is continuous on S hence, by the Extreme Value Theorem,
the restriction of f to S is bounded and attains its bounds. We study the extreme values of f on 05, that
we divide in four parts:

e On the lower side of S, namely [0,2] x {0}: define the function

g: [0,2] — R
x — f(2,0) = —23 +38.

Clearly, g is decreasing, hence
ming =¢(2) =0 and max g = g(0) = 8.

The minimum corresponds to the point (2,0) and the maximum to the point (0, 0).

e On the upper side of S, namely [0,2] x {1}: define the function

g: [0,2] — R
v +— f(2,2) = —2% +62.



For x € [0,2], ¢’(z) = =322 + 6, hence g is increasing on [0,v/2] and decreasing on [/2, 2], hence
min g = min{g(0),g(2)} =0 and max g = g(v2) = 4V/2.

The minimum corresponds to the point (0,2) and the maximum to the point (v/2,2).
o On the left side of S, namely {0} x [0, 2]: define the function

g: [0,2] — R
y — f(0,y) =—y*+8,

hence (similar to the lower side):
ming =0 and max g = 8.

The minimum corresponds to the point (0,2) and the maximum to the point (0, 0).

e On the right side of S, namely {2} x [0, 2]: define the function

g: [0,2] — R
y — f(2,y) = -y + 6y,

hence (similar to the upper side):
ming =0 and maxg = 4V/2.

The minimum corresponds to the point (2,0) and the maximum to the point (2, v/2).

At the critical point (1,1), the value of f is: f(1,1) = 9 (which is greater than the maximum of f on 95).
Conclusion:
mbinf =0 and méixf =9,

and the minimum is attained at (0,0) and the maximum at (1, 1).

Exercise 2.

1. The matrix of ¢ in the standard basis of R? is:

A= [q]sta = (_4 _\/5) .

V32

The characteristic polynomial of A is:
xa(X)=X?-6X +5= (X —1)(X —5).

Hence the eigenvalues of A are 1 and 5 (both of multiplicity 1). The equation of the eigenspace of A associated
with 1 is:
FEy: 3z — /3y =0,

- ()

as an eigenvector of A associated with 1. We set

(1 v
r1 = 5,7 .

Notice that ||z1]]2 = 1. To obtain an eigenvector of A associated with 5, we can repeat the procedure, or
observe that since A is a real symmetric matrix, F5 is orthogonal to E;, hence

- (38

and we may choose



is an eigenvector of A associated with 5. We set

(51
I5 = —775 .

Notice that ||x5]l2 = 1. We now conclude that the family % = (x1,25) is an orthonormal basis of R? (with
respect to the standard dot product) Moreover, since

9]z = ((1) (5))

is diagonal, we conclude that £ is an orthogonal family with respect to .

2. Let (z,y) € R? and let 2,y be the coefficients of the coordinates of (z,y) in the basis %:

(2, 9)] 5 = (Z:) -

(z,y) € (C) <= q(z,y) =25 < (/)2 +5(y)? = 25.

We can now plot (C) in the frame (0, %): see Figure 9. And we deduce (C) in the standard frame (0, e, e, ):
see Figure 10.

Then

Exercise 3.

1. Since A is a real symmetric matrix, there exists an orthogonal matrix P and a diagonal matrix D such that
A = PD'P (Spectral Theorem).

2. 3 is an eigenvalue of A since
1 -1 2
rtk(A—33)=rk[-1 1 2
-2 2 4
By the Rank-Nullity Theorem, we deduce that 3 has multiplicity 2. Using the trace, we conclude that the

other eigenvalue of A is 9 (of multiplicity 1). Since A is a real symmetric matrix, we know that F3 1 Fg, and
we use this fact in the sequel.

=1

An equation of Fj is
Es:x—y—22=0

1

from which we deduce that Xg = [ —1 | is an eigenvector of A associated with the eigenvalue 9. We choose
-2

a vector of E3, say

1
X3=11
0

and using a cross product, we find another eigenvector of A associated with 3:

1 1 2
Xi=XgxXs=|-1|x[1]=]-2
-2 0 2

To obtain P, we divide X3, X% and Xg by their norm and stack them together:

1/vV2 1/V/3 1/V6
P=11/V2 -1V3 -1V6
0 1/vV/3 —2V6

And if we set

I
cow
cocwo
© oo

we have A = PD'P.



O sqrt(5)

Figure 9. The conic (C) of Exercise 2 in the frame (O, £).



Figure 10. The conic (C') of Exercise 2 in the standard frame (O, ez, €,).

3. a) Since the signature of ¢ is (3,0), we conclude that ¢ is positive definite, hence /g is a norm on R3. We then
recognize S as the ball of R® (with respect to the norm ,/g) of radius 2; hence S is closed and bounded.

b) Since [g]lg = D # I3, we conclude that Z is not an orthonormal family with respect to ¢.
/

T T

c¢) First recall the relation between X = |y | and X' = | ¢/
z Z

X =PX'.

Then:
x2+y2+22:tXX:t(PX/)PX/:tX/tPPX/:tX/X/:(1'/)2+(y/)2+(2/)2.

d) Let (z,9,2) € R and define X and X’ as above, i.e.,

X
and X' = |y | ='PX.

Zl

X =

n e r



Then
(z,y,2) €S = 3(z")? +3(y)? +9()? < 4.
Hence, if we define
S ={(2',y,7) € R | 3(2")? +3(y)2 +9(2)% < 4}
we have:
sup ' +y*+22= sup () + () +(2)%
(z,y,2)€S (z’,y’,2")ES’

Let (z/,y,2") € S’. Then:

(3(2")* +3(y)* +9(=')?) <

W =

At this point we can conclude that

ol i

sup  (¢)? + (y)* + () <
(2 ' 2" e

Now since (2/4/3,0,0) € S,

2 \? 4
sup  (2)*+ (y)* + () > () +0%40% =,
(a'y',2")eS V3 3

and we conclude that the value of this supremum is 4/3.

Exercise 4.

1. a) See Figure 11.
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Figure 11. Graph of ¢; of Exercise 4.

1 1/4
12 :/0 o1 (t)* dt :/0 4dt =1,

hence [|¢1] = 1.
1
(p1,02) =/ P1(t)p2(t)dt =0
0

since Vt € [0,1), 1(t)p2(t) = 0.



2. Clearly,

hence 91,95 € E.

1

Y1 = ﬁ(% + 2)

and

Py = %(@3 + 1)

3. We notice that (11,12) is an orthonormal basis of G hence:
g = (f,1)¥1 + (f, Pa2) 2.

Since £ is an orthonormal family, we obtain:

and

4. See Figure 12.

c1 = (f, 1) = \}5((5% — 2 + 203 +4pa, o1 + p2) = %(5— 1) = % = 2V/2.
co = (i) = %((5(,01 o+ 2o + Ao, 5 + pa) = %(2+4) . % _ 32
Y
¢——0
———0
© o]
[ @ o]
O 1 X
————90

5. a) Since

Figure 12. Graph of f (in black) and of g (in red) of Exercise 4.

(ahiIgEWHf - (a1¢1 +

azga)|| = 11 = gll,

g is the best approximation (in the sense of ||-||) of f in G. Hence the possible loss of information is
minimum when we transmit g.

b) e If we choose h = 13, then

pa(f) =g+ (fiY3)s =g+

%(—1 )y = g — 3V,

We know that f — pr(f) and py(f) are orthogonal with respect to (-,-) hence, by the Pythagorean
Theorem (and since (1,2, 1)3) is an orthonormal basis):

1f = pa(HI? = I£1I7 = llpr (£)II* = 46 — (8 + 18 + 18) = 46 — 44 = 2.

e If we choose h = 14, then

Again,

pu(f) =g+ (fia)s =g+

(4= 2 = g+ 2V

1f = pa(HI? = I£1I” = llpr (£)II* = 46 — (8 + 18 + 8) = 46 — 34 = 10.

The distance between f and pg(f) is smaller in the first case, hence it’s better to choose h = 1.



