Name: OLLIVIER EUK?
Exercise 1. Let φ be the symmetric bilinear form on \mathbb{R}^{2} the matrix of which in the standard basis std $=\left(e_{1}, e_{2}\right)$ of \mathbb{R}^{2} is

$$
[\varphi]_{\mathrm{std}}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

Let

$$
u_{1}=(1,1), \quad \text { and } \quad u_{2}=(1,-1)
$$

and let $\mathscr{C}=\left(u_{1}, u_{2}\right)$. You're given that \mathscr{C} is a basis of \mathbb{R}^{2}.
Use the change of basis formula to determine the matrix $[\varphi]_{\mathscr{C}}$ of φ in \mathscr{C}.

$$
[\varphi]_{8}=\left[\begin{array}{cc}
2 & 2 \\
2 & -2
\end{array}\right]
$$

Exercise 2. Let φ be the symmetric bilinear form on \mathbb{R}^{3} such that its matrix in the standard basis std of \mathbb{R}^{3} is

$$
[\varphi]_{\mathrm{std}}=\left(\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right)
$$

You're given that φ is an inner product on \mathbb{R}^{3}. Let

$$
\begin{equation*}
e_{1}=(1,1,0) \tag{and}
\end{equation*}
$$

$$
e_{2}=(0,0,1),
$$

and let

$$
F=\operatorname{Span}\left\{e_{1}, e_{2}\right\}
$$

Give an orthogonal basis (with respect to φ) \mathscr{B} of F.

$$
s=\{(1,1,0),(-1,-1,0)\} \leftarrow \text { the } 2 \text { vectors aven't indyendent! }
$$

and deduce an orthonormal basis (with respect to φ) \mathscr{B}^{\prime} of F :

$$
W^{\prime}=\left\{\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right),\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}, 0\right)\right\} \Delta \text { with coset to } \varphi
$$

Exercise 3. Let (E, φ) be a pre-Hilbert space with norm $\|\cdot\|$. Recall the Pythagorean Theorem.

Let $\mu, v \in E \quad \mu \perp_{\varphi} v \Leftrightarrow\|\mu+v\|^{2}=\|\mu\|^{2}+\|N\|^{2}$

