

SCAN 2 — Quiz #16 - 12

April 30, 2019

Name: OLLIVIER Etilne

Exercise 1. Let φ be the symmetric bilinear form on \mathbb{R}^2 the matrix of which in the standard basis std = (e_1, e_2) of \mathbb{R}^2 is

$$[\varphi]_{\rm std} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

and

Let

$$u_1 = (1, 1),$$

 $u_2 = (1, -1),$

 $e_2 = (0, 0, 1),$

and let $\mathscr{C} = (u_1, u_2)$. You're given that \mathscr{C} is a basis of \mathbb{R}^2 . Use the change of basis formula to determine the matrix $[\varphi]_{\mathscr{C}}$ of φ in \mathscr{C} .

$$[\varphi]_{\mathscr{C}} = \begin{bmatrix} 2 & 2\\ 2 & -2 \end{bmatrix}.$$

Exercise 2. Let φ be the symmetric bilinear form on \mathbb{R}^3 such that its matrix in the standard basis std of \mathbb{R}^3 is

$$[\varphi]_{\mathrm{std}} = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

You're given that φ is an inner product on \mathbb{R}^3 . Let

$$e_1 = (1, 1, 0)$$
 and

and let

$$F = \operatorname{Span}\{e_1, e_2\}.$$

Give an orthogonal basis (with respect to φ) \mathscr{B} of F.

$$\mathcal{B} = \{(1,1,0), (-1,-1,0)\} \in \text{the 2 vectors aren't independent }$$

and deduce an orthonormal basis (with respect to φ) \mathscr{B}' of F:

Exercise 3. Let (E, φ) be a pre-Hilbert space with norm $\|\cdot\|$. Recall the Pythagorean Theorem.

det
$$u, v \in E$$
 $u \perp_{e^{v}} <= 2 ||u + v||^{2} = ||u||^{2} + ||v||^{2}$