Exercise 1.

1. The function $t \mapsto \frac{\sin (t)}{1+t^{2}}$ is continuous on $[0,+\infty)$, hence I is improper at $+\infty$. Clearly,

$$
\forall t \in[1,+\infty),\left|\frac{\sin (t)}{1+t^{2}}\right| \leq \frac{1}{t^{2}}
$$

hence I converges absolutely, hence I converges.
2. The function $t \mapsto \frac{1}{1-\sqrt{t}}$ is continuous on $[0,1)$, hence J is improper at 1^{-}. Now,

$$
\forall t \in[0,1), \frac{1}{1-\sqrt{t}}=\frac{1+\sqrt{t}}{1-t} \underset{t \rightarrow 1^{-}}{\sim} \frac{2}{1-t}>0 .
$$

By Riemann at a finite point, we know that the improper integral $\int_{0}^{1} \frac{2 \mathrm{~d} t}{1-t}$ diverges at 1^{-}, hence we conclude, by the equivalent test, that J is divergent.

Exercise 2.

1. The function \ln is continuous on $(0,1]$, hence K is improper at 0^{+}. Let $A \in(0,1)$. Then:

$$
\begin{aligned}
\int_{A}^{1} \ln (t) \mathrm{d} t & =[t \ln (t)-t]_{t=A}^{t=1} \\
& =-1-A \ln (A)-A \\
& \xrightarrow[A \rightarrow 0^{+}]{ }-1 \in \mathbb{R},
\end{aligned}
$$

hence K converges and $K=-1$.
2. For $x \geq 0$, the function $t \mapsto \ln \left(1+t^{x}\right)$ is continuous on $[0,1]$, hence $F(x)$ is a definite integral of a continuous function on a closed and bounded interval, hence $F(x)$ is well-defined.
3. Let $x<0$. The function $t \mapsto \ln \left(1+t^{x}\right)$ is continuous on $(0,1]$, hence the improper integral $F(x)$ is improper at 0^{+}.

For $t \in(0,1]$,

$$
\ln \left(1+t^{x}\right)=\ln \left(t^{x}\left(t^{-x}+1\right)\right)=\ln \left(t^{x}\right)+\ln \left(1+t^{-x}\right)
$$

Since $x<0$, we have $\ln \left(t^{x}\right) \underset{t \rightarrow 0^{+}}{\longrightarrow}+\infty$ and $\ln \left(1+t^{-x}\right) \underset{t \rightarrow 0^{+}}{\longrightarrow} 0$, hence

$$
\ln \left(1+t^{x}\right) \underset{t \rightarrow 0^{+}}{\sim} \ln \left(t^{x}\right)=x \ln (t)>0 .
$$

By the equivalent test and by Question 1, we conclude that the improper integral $F(x)$ is convergent.
Hence $F(x)$ is defined for $x \geq 0$ (Question 2) and for $x<0$ (this question), hence $F(x)$ is defined for $x \in \mathbb{R}$.
4. Let $t \in(0,1]$ and $x \in(-\infty, 0)$. Then $1+t^{x} \geq t^{x}$ hence $\ln \left(1+t^{x}\right) \geq \ln \left(t^{x}\right)=x \ln (t)$.

From the previous inequality we conclude:

$$
\forall x \in(-\infty, 0), F(x)=\int_{0}^{1} \ln \left(1+t^{x}\right) \mathrm{d} t \geq x \int_{0}^{1} \ln (t) \mathrm{d} t=-x
$$

Hence, by the Squeeze Theorem, $\lim _{x \rightarrow-\infty} F(x)=+\infty$.
5. Let $A \in(0,1]$ and $x \in(0,+\infty)$. We use the substitution $z=t^{x}$, which yields $t=z^{1 / x}$ hence $\mathrm{d} t=\frac{z^{1 / x-1} \mathrm{~d} z}{x}$:

$$
\int_{A}^{1} \ln \left(1+t^{x}\right) \mathrm{d} t=\frac{1}{x} \int_{A^{x}}^{1} \ln (1+z) z^{1 / x-1} \mathrm{~d} z \underset{A \rightarrow 0^{+}}{\longrightarrow} \frac{1}{x} \int_{0}^{1} \ln (1+z) z^{1 / x-1} \mathrm{~d} z
$$

since $A^{x} \underset{A \rightarrow 0^{+}}{\longrightarrow} 0$ since $x>0$.
6. Let $x \in \mathbb{R}_{+}^{*}$ and let $z \in(0,1]$. Then, by the given inequality,

$$
\ln (1+z) z^{1 / x-1} \leq z^{1 / x}
$$

hence, by integrating with respect to z from 0 to 1 (with $0<1$) yields

$$
F(x) \leq \frac{1}{x} \int_{0}^{1} z^{1 / x} \mathrm{~d} z=\frac{1}{x}\left[x z^{1+1 / x}\right]_{z=0}^{z=1}=\frac{1}{1+x} .
$$

Clearly, $F(x) \geq 0$ and hence $0 \leq F(x) \leq \frac{1}{1+x}$ and we conclude, by the Squeeze Theorem, that $\lim _{x \rightarrow+\infty} F(x)=$ 0.

Exercise 3.

1. Let $n \in \mathbb{N}^{*}$. The function $x \mapsto \frac{1}{\left(1+x^{2}\right)^{n}}$ is continuous on $[0,+\infty)$, hence the improper integral I_{n} is improper at $+\infty$. Now

$$
\frac{1}{\left(1+x^{2}\right)^{n}} \underset{x \rightarrow+\infty}{\sim} \frac{1}{x^{2 n}}>0
$$

and by Riemann at $+\infty$ (with $\alpha=2 n \geq 2>1$) we know that the improper integral $\int_{1}^{+\infty} \frac{\mathrm{d} x}{x^{2 n}}$ converges. Hence, by the equivalent test, I_{n} converges.
2. Let $A \in \mathbb{R}_{+}^{*}$. By an integration by parts with $u(x)=\frac{1}{\left(1+x^{2}\right)^{n}}$ and $v^{\prime}(x)=1$ and hence $u^{\prime}(x)=$ $-\frac{2 n x}{\left(1+x^{2}\right)^{n+1}}$ and $v(x)=x$, we have:

$$
\int_{0}^{A} \frac{\mathrm{~d} x}{\left(1+x^{2}\right)^{n}}=\left[\frac{x}{\left(1+x^{2}\right)^{n}}\right]_{x=0}^{x=A}-\int_{0}^{A} \frac{-2 n x^{2}}{\left(1+x^{2}\right)^{n+1}} \mathrm{~d} x=\frac{A}{\left(1+A^{2}\right)^{n}}+2 n \int_{0}^{A} \frac{x^{2}}{\left(1+x^{2}\right)^{n+1}} \mathrm{~d} x
$$

Hence, by taking the limit as $A \rightarrow+\infty$ we obtain (since $n \geq 1$):

$$
I_{n}=\int_{0}^{+\infty} \frac{\mathrm{d} x}{\left(1+x^{2}\right)^{n}}=0+2 n \int_{0}^{+\infty} \frac{x^{2}}{\left(1+x^{2}\right)^{n+1}} \mathrm{~d} x
$$

Now

$$
\begin{aligned}
I_{n} & =2 n \int_{0}^{+\infty} \frac{x^{2}}{\left(1+x^{2}\right)^{n+1}} \mathrm{~d} x \\
& =2 n \int_{0}^{+\infty}\left(\frac{1+x^{2}}{\left(1+x^{2}\right)^{n+1}}-\frac{1}{\left(1+x^{2}\right)^{n+1}}\right) \mathrm{d} x \\
& =2 n \int_{0}^{+\infty}\left(\frac{1}{\left(1+x^{2}\right)^{n}}-\frac{1}{\left(1+x^{2}\right)^{n+1}}\right) \mathrm{d} x \\
& =2 n I_{n}-2 n I_{n+1}
\end{aligned}
$$

hence $(1-2 n) I_{n}=-2 n I_{n+1}$ and we conclude that $I_{n}=\frac{2 n}{2 n-1} I_{n+1}$.
3. Let $n \in \mathbb{N}^{*}$. Then

$$
\begin{aligned}
\sum_{k=1}^{n} I_{k} & =\sum_{k=1}^{n} \int_{0}^{+\infty} \frac{\mathrm{d} x}{\left(1+x^{2}\right)^{k}} \\
& =\int_{0}^{+\infty} \sum_{k=1}^{n} \frac{1}{\left(1+x^{2}\right)^{k}} \mathrm{~d} x \\
& =\int_{0}^{+\infty} \sum_{k=1}^{n}\left(\frac{1}{1+x^{2}}\right)^{k} \mathrm{~d} x .
\end{aligned}
$$

At this point, we want to use the formula for the sum of a geometric progression, which is valid when the ratio $q=\frac{1}{1+x^{2}} \neq 1$, i.e., for $x \neq 0$. Since 0 is in the domain of integration, we have to be a little bit careful: Let $A \in \mathbb{R}_{+}^{*}$. Then:

$$
\begin{aligned}
\int_{A}^{+\infty} \sum_{k=1}^{n}\left(\frac{1}{1+x^{2}}\right)^{k} \mathrm{~d} x & =\int_{A}^{+\infty} \frac{\frac{1}{1+x^{2}}-\left(\frac{1}{1+x^{2}}\right)^{n+1}}{1-\frac{1}{1+x^{2}}} \mathrm{~d} x \\
& =\int_{A}^{+\infty} \frac{1-\left(\frac{1}{1+x^{2}}\right)^{n}}{x^{2}} \mathrm{~d} x \\
& =\int_{A}^{+\infty} \frac{1}{x^{2}}\left(1-\frac{1}{\left(1+x^{2}\right)^{n}}\right) \mathrm{d} x \\
& \xrightarrow[A \rightarrow 0^{+}]{\longrightarrow} \int_{0}^{+\infty} \frac{1}{x^{2}}\left(1-\frac{1}{\left(1+x^{2}\right)^{n}}\right) \mathrm{d} x
\end{aligned}
$$

4. Let $n \in \mathbb{N}^{*}$. Since for $x>0$,

$$
\frac{1}{x^{2}}\left(1-\frac{1}{\left(1+x^{2}\right)^{n}}\right) \geq 0
$$

and since $[1 / \sqrt{n}, 1] \subset[0,+\infty)$, we conclude:

$$
\int_{0}^{+\infty} \frac{1}{x^{2}}\left(1-\frac{1}{\left(1+x^{2}\right)^{n}}\right) \mathrm{d} x \geq \int_{1 / \sqrt{n}}^{1} \frac{1}{x^{2}}\left(1-\frac{1}{\left(1+x^{2}\right)^{n}}\right) \mathrm{d} x
$$

Moreover, the function $x \mapsto\left(1-\frac{1}{\left(1+x^{2}\right)^{n}}\right)$ is increasing on \mathbb{R}_{+}, hence

$$
\forall x \in[1 / \sqrt{n}, 1], \quad\left(1-\frac{1}{\left(1+x^{2}\right)^{n}}\right) \geq\left(1-\frac{1}{(1+1 / n)^{n}}\right)
$$

hence

$$
\forall x \in[1 / \sqrt{n}, 1], \frac{1}{x^{2}}\left(1-\frac{1}{\left(1+x^{2}\right)^{n}}\right) \geq \frac{1}{x^{2}}\left(1-\frac{1}{(1+1 / n)^{n}}\right)
$$

Now, integrating this inequality from $1 / \sqrt{n}$ to 1 yields:

$$
\begin{aligned}
\int_{1 / \sqrt{n}}^{1} \frac{1}{x^{2}}\left(1-\frac{1}{\left(1+x^{2}\right)^{n}}\right) \mathrm{d} x & \geq \int_{1 / \sqrt{n}}^{1} \frac{1}{x^{2}}\left(1-\frac{1}{(1+1 / n)^{n}}\right) \mathrm{d} x \\
& =\left(1-\frac{1}{(1+1 / n)^{n}}\right)\left[-\frac{1}{x}\right]_{x=1 / \sqrt{n}}^{x=1} \\
& =(\sqrt{n}-1)\left(1-\frac{1}{(1+1 / n)^{n}}\right)
\end{aligned}
$$

hence the result.
5. We know that

$$
\lim _{n \rightarrow+\infty}\left(1+\frac{1}{n}\right)^{n}=\mathrm{e}
$$

hence

$$
(\sqrt{n}-1)\left(1-\frac{1}{(1+1 / n)^{n}}\right) \underset{n \rightarrow+\infty}{\sim} \mathrm{e} \sqrt{n} \underset{n \rightarrow+\infty}{\longrightarrow}+\infty
$$

hence, by the Squeeze Theorem,

$$
\lim _{n \rightarrow+\infty} \sum_{k=1}^{n} I_{k}=+\infty
$$

Exercise 4.

1. - Separation property: let $f \in E$ such that $N(f)=0$, hence

$$
\int_{0}^{1} t|f(t)| \mathrm{d} t=0
$$

Since the function $t \mapsto t|f(t)|$ is continuous and non-negative, we conclude that

$$
\forall t \in[0,1], t|f(t)|=0
$$

hence

$$
\forall t \in(0,1], f(t)=0
$$

(notice the open interval at 0). Since f is continuous, we have:

$$
f(0)=\lim _{t \rightarrow 0^{+}} f(t)=\lim _{t \rightarrow 0^{+}} 0=0,
$$

and we conclude that $f=0_{E}$.

- Positive homogeneity: let $f \in E$ and let $\lambda \in \mathbb{R}$. Then

$$
N(\lambda f)=\int_{0}^{1} t|\lambda f(t)| \mathrm{d} t=|\lambda| \int_{0}^{1} t|f(t)| \mathrm{d} t=|\lambda| N(f) .
$$

- Triangle inequality: let $f, g \in E$. Then:

$$
\begin{aligned}
N(f+g) & =\int_{0}^{1} t|f(t)+g(t)| \mathrm{d} t \\
& \leq \int_{0}^{1} t(|f(t)|+|g(t)|) \mathrm{d} t \\
& =\int_{0}^{1} t|f(t)| \mathrm{d} t+\int_{0}^{1} t|g(t)| \mathrm{d} t \\
& =N(f)+N(g) .
\end{aligned}
$$

2. Let $f \in E$. Since

$$
\forall t \in[0,1], t|f(t)| \leq|f(t)|,
$$

we conclude (by integrating from 0 to 1) that:

$$
\int_{0}^{1} t|f(t)| \mathrm{d} t \leq \int_{0}^{1}|f(t)|
$$

i.e., $N(f) \leq\|f\|_{1}$.
3. The second statement is correct. Indeed, assume that the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges to f for the norm $\|\cdot\|_{1}$. This means that $\lim _{n \rightarrow+\infty}\left\|f_{n}-f\right\|_{1}=0$. Since $0 \leq N \leq\|\cdot\|_{1}$ we conclude, by the Squeeze Theorem, that $\lim _{n \rightarrow+\infty} N\left(f_{n}-f\right)=0$, i.e., that $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges to f for the norm N.
4. a) Let $n \in \mathbb{N}^{*}$. Then:

$$
N\left(f_{n}\right)=\int_{0}^{1 / n} t n \mathrm{~d} t+\int_{1 / n}^{1} \mathrm{~d} t=\frac{1}{2 n}+1-\frac{1}{n}=1-\frac{1}{2 n}
$$

and

$$
\left\|f_{n}\right\|_{1}=\int_{0}^{1 / n} n \mathrm{~d} t+\int_{1 / n}^{1} \frac{\mathrm{~d} t}{t}=1+\ln (n)
$$

b) We proceed by contradiction: assume that N and $\|\cdot\|_{1}$ are equivalent. Hence there exists $\alpha>0$ such that $\alpha\|\cdot\|_{1} \leq N$. In particular, for $n \in \mathbb{N}^{*}$ we have

$$
\alpha\left\|f_{n}\right\|_{1}=\alpha(1+\ln (n)) \leq N\left(f_{n}\right)=1-\frac{1}{2 n}
$$

Taking the limit as $n \rightarrow+\infty$ yields (since $\alpha>0$): $+\infty \leq 1$, which is impossible. Hence the norms N and $\|\cdot\|_{1}$ are not equivalent.

Exercise 5. Let $\left(h_{x}, h_{y}, h_{z}\right) \in \mathbb{R}^{3}$. Then:

$$
\begin{aligned}
f\left(1+h_{x},-2+h_{y},-2+h_{z}\right) & =3\left(1+h_{x}\right)^{2}-\left(1+h_{x}\right)\left(-2+h_{y}\right)-3\left(-2+h_{y}\right)\left(-2+h_{z}\right)+\left(-2+h_{z}\right)^{2} \\
& =-3+8 h_{x}+5 h_{y}+2 h_{z}+3 h_{x}^{2}-h_{x} h_{y}-3 h_{y} h_{z}+h_{z}^{2} \\
& =f(1,-2,-2)+8 h_{x}+5 h_{y}+2 h_{z}+3 h_{x}^{2}-h_{x} h_{y}-3 h_{y} h_{z}+h_{z}^{2} .
\end{aligned}
$$

We obtained the constant term, a linear term with respect to $\left(h_{x}, h_{y}, h_{z}\right)$ and a remainder. Since \mathbb{R}^{3} is a finite dimensional vector space, the linear term is automatically continuous. To prove that f is differentiable at a_{0} we only need to prove that the remainder is a $o\left(\left\|\left(h_{x}, h_{y}, h_{z}\right)\right\|\right)$: for $h=\left(h_{x}, h_{y}, h_{z}\right) \neq(0,0,0)$,

$$
\left|\frac{3 h_{x}^{2}-h_{x} h_{y}-3 h_{y} h_{z}+h_{z}^{2}}{\|h\|_{1}}\right| \leq \frac{8\|h\|_{1}^{2}}{\|h\|_{1}}=8\|h\|_{1} \underset{h \rightarrow(0,0,0)}{\longrightarrow} 0
$$

where, in the numerator, we used the triangle inequality for the absolute value together with the following useful inequalities:

$$
\left|h_{x}\right| \leq\|h\|_{1} \quad\left|h_{y}\right| \leq\|h\|_{1} \quad\left|h_{z}\right| \leq\|h\|_{1}
$$

Notice that we chose the 1-norm, but any other norm would produce the same result as all norms are equivalent on \mathbb{R}^{3}.
Hence f is differentiable at a_{0} and:

$$
\begin{array}{ccc}
\mathrm{d}_{a_{0}} f: & \mathbb{R}^{3} & \longrightarrow \\
\left(h_{x}, h_{y}, h_{z}\right) & \longmapsto 8 h_{x}+5 h_{y}+2 h_{z} .
\end{array}
$$

