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Exercise 1.

1. The function t 7→ sin(t)

1 + t2
is continuous on [0,+∞), hence I is improper at +∞. Clearly,

∀t ∈ [1,+∞),

∣

∣

∣

∣

sin(t)

1 + t2

∣

∣

∣

∣

≤ 1

t2
,

hence I converges absolutely, hence I converges.

2. The function t 7→ 1

1−
√
t

is continuous on [0, 1), hence J is improper at 1−. Now,

∀t ∈ [0, 1),
1

1−
√
t
=

1 +
√
t

1− t
∼

t→1−

2

1− t
> 0.

By Riemann at a finite point, we know that the improper integral
∫ 1

0
2dt
1−t diverges at 1−, hence we conclude,

by the equivalent test, that J is divergent.

Exercise 2.

1. The function ln is continuous on (0, 1], hence K is improper at 0+. Let A ∈ (0, 1). Then:
∫ 1

A

ln(t) dt =
[

t ln(t)− t
]t=1

t=A

= −1−A ln(A)−A

−→
A→0+

−1 ∈ R,

hence K converges and K = −1.

2. For x ≥ 0, the function t 7→ ln
(

1+ tx
)

is continuous on [0, 1], hence F (x) is a definite integral of a continuous
function on a closed and bounded interval, hence F (x) is well-defined.

3. Let x < 0. The function t 7→ ln
(

1 + tx
)

is continuous on (0, 1], hence the improper integral F (x) is improper
at 0+.

For t ∈ (0, 1],

ln
(

1 + tx
)

= ln
(

tx
(

t−x + 1
)

)

= ln
(

tx
)

+ ln
(

1 + t−x
)

.

Since x < 0, we have ln
(

tx
)

−→
t→0+

+∞ and ln
(

1 + t−x
)

−→
t→0+

0, hence

ln
(

1 + tx
)

∼
t→0+

ln
(

tx
)

= x ln(t) > 0.

By the equivalent test and by Question 1, we conclude that the improper integral F (x) is convergent.

Hence F (x) is defined for x ≥ 0 (Question 2) and for x < 0 (this question), hence F (x) is defined for x ∈ R.

4. Let t ∈ (0, 1] and x ∈ (−∞, 0). Then 1 + tx ≥ tx hence ln
(

1 + tx
)

≥ ln
(

tx
)

= x ln(t).

From the previous inequality we conclude:

∀x ∈ (−∞, 0), F (x) =

∫ 1

0

ln
(

1 + tx
)

dt ≥ x

∫ 1

0

ln(t) dt = −x.

Hence, by the Squeeze Theorem, lim
x→−∞

F (x) = +∞.

5. Let A ∈ (0, 1] and x ∈ (0,+∞). We use the substitution z = tx, which yields t = z1/x hence dt =
z1/x−1dz

x
:

∫ 1

A

ln
(

1 + tx
)

dt =
1

x

∫ 1

Ax

ln(1 + z)z1/x−1dz −→
A→0+

1

x

∫ 1

0

ln(1 + z)z1/x−1 dz,

since Ax −→
A→0+

0 since x > 0.



6. Let x ∈ R
∗
+ and let z ∈ (0, 1]. Then, by the given inequality,

ln
(

1 + z
)

z1/x−1 ≤ z1/x,

hence, by integrating with respect to z from 0 to 1 (with 0 < 1) yields

F (x) ≤ 1

x

∫ 1

0

z1/x dz =
1

x

[

xz1+1/x
]z=1

z=0
=

1

1 + x
.

Clearly, F (x) ≥ 0 and hence 0 ≤ F (x) ≤ 1

1 + x
and we conclude, by the Squeeze Theorem, that lim

x→+∞
F (x) =

0.

Exercise 3.

1. Let n ∈ N
∗. The function x 7→ 1

(

1 + x2
)n is continuous on [0,+∞), hence the improper integral In is improper

at +∞. Now
1

(

1 + x2
)n ∼

x→+∞

1

x2n
> 0,

and by Riemann at +∞ (with α = 2n ≥ 2 > 1) we know that the improper integral
∫ +∞
1

dx

x2n
converges.

Hence, by the equivalent test, In converges.

2. Let A ∈ R
∗
+. By an integration by parts with u(x) =

1
(

1 + x2
)n and v′(x) = 1 and hence u′(x) =

− 2nx
(

1 + x2
)n+1 and v(x) = x, we have:

∫ A

0

dx
(

1 + x2
)n =

[

x
(

1 + x2
)n

]x=A

x=0

−
∫ A

0

−2nx2

(

1 + x2
)n+1 dx =

A
(

1 +A2
)n + 2n

∫ A

0

x2

(

1 + x2
)n+1 dx

Hence, by taking the limit as A → +∞ we obtain (since n ≥ 1):

In =

∫ +∞

0

dx
(

1 + x2
)n = 0 + 2n

∫ +∞

0

x2

(

1 + x2
)n+1 dx.

Now

In = 2n

∫ +∞

0

x2

(

1 + x2
)n+1 dx

= 2n

∫ +∞

0

(

1 + x2

(

1 + x2
)n+1 − 1

(

1 + x2
)n+1

)

dx

= 2n

∫ +∞

0

(

1
(

1 + x2
)n − 1

(

1 + x2
)n+1

)

dx

= 2nIn − 2nIn+1

hence (1− 2n)In = −2nIn+1 and we conclude that In =
2n

2n− 1
In+1.

3. Let n ∈ N
∗. Then

n
∑

k=1

Ik =

n
∑

k=1

∫ +∞

0

dx
(

1 + x2
)k

=

∫ +∞

0

n
∑

k=1

1
(

1 + x2
)k

dx

=

∫ +∞

0

n
∑

k=1

(

1

1 + x2

)k

dx.



At this point, we want to use the formula for the sum of a geometric progression, which is valid when the

ratio q =
1

1 + x2
6= 1, i.e., for x 6= 0. Since 0 is in the domain of integration, we have to be a little bit careful:

Let A ∈ R
∗
+. Then:

∫ +∞

A

n
∑

k=1

(

1

1 + x2

)k

dx =

∫ +∞

A

1

1 + x2
−
(

1

1 + x2

)n+1

1− 1

1 + x2

dx

=

∫ +∞

A

1−
(

1

1 + x2

)n

x2
dx

=

∫ +∞

A

1

x2

(

1− 1
(

1 + x2
)n

)

dx

−→
A→0+

∫ +∞

0

1

x2

(

1− 1
(

1 + x2
)n

)

dx.

4. Let n ∈ N
∗. Since for x > 0,

1

x2

(

1− 1
(

1 + x2
)n

)

≥ 0,

and since [1/
√
n, 1] ⊂ [0,+∞), we conclude:

∫ +∞

0

1

x2

(

1− 1
(

1 + x2
)n

)

dx ≥
∫ 1

1/
√
n

1

x2

(

1− 1
(

1 + x2
)n

)

dx

Moreover, the function x 7→
(

1− 1
(

1 + x2
)n

)

is increasing on R+, hence

∀x ∈ [1/
√
n, 1],

(

1− 1
(

1 + x2
)n

)

≥
(

1− 1
(

1 + 1/n
)n

)

hence

∀x ∈ [1/
√
n, 1],

1

x2

(

1− 1
(

1 + x2
)n

)

≥ 1

x2

(

1− 1
(

1 + 1/n
)n

)

.

Now, integrating this inequality from 1/
√
n to 1 yields:

∫ 1

1/
√
n

1

x2

(

1− 1
(

1 + x2
)n

)

dx ≥
∫ 1

1/
√
n

1

x2

(

1− 1
(

1 + 1/n
)n

)

dx

=

(

1− 1
(

1 + 1/n
)n

)

[

− 1

x

]x=1

x=1/
√
n

=
(√

n− 1
)

(

1− 1
(

1 + 1/n
)n

)

,

hence the result.

5. We know that

lim
n→+∞

(

1 +
1

n

)n

= e,

hence
(√

n− 1
)

(

1− 1
(

1 + 1/n
)n

)

∼
n→+∞

e
√
n −→

n→+∞
+∞

hence, by the Squeeze Theorem,

lim
n→+∞

n
∑

k=1

Ik = +∞.



Exercise 4.

1. • Separation property: let f ∈ E such that N(f) = 0, hence

∫ 1

0

t
∣

∣f(t)
∣

∣ dt = 0.

Since the function t 7→ t
∣

∣f(t)
∣

∣ is continuous and non-negative, we conclude that

∀t ∈ [0, 1], t
∣

∣f(t)
∣

∣ = 0,

hence
∀t ∈ (0, 1], f(t) = 0

(notice the open interval at 0). Since f is continuous, we have:

f(0) = lim
t→0+

f(t) = lim
t→0+

0 = 0,

and we conclude that f = 0E .

• Positive homogeneity: let f ∈ E and let λ ∈ R. Then

N(λf) =

∫ 1

0

t
∣

∣λf(t)
∣

∣ dt = |λ|
∫ 1

0

t
∣

∣f(t)
∣

∣ dt = |λ|N(f).

• Triangle inequality: let f, g ∈ E. Then:

N(f + g) =

∫ 1

0

t
∣

∣f(t) + g(t)
∣

∣ dt

≤
∫ 1

0

t
(

∣

∣f(t)
∣

∣+
∣

∣g(t)
∣

∣

)

dt

=

∫ 1

0

t
∣

∣f(t)
∣

∣ dt+

∫ 1

0

t
∣

∣g(t)
∣

∣ dt

= N(f) +N(g).

2. Let f ∈ E. Since
∀t ∈ [0, 1], t

∣

∣f(t)
∣

∣ ≤
∣

∣f(t)
∣

∣,

we conclude (by integrating from 0 to 1) that:

∫ 1

0

t
∣

∣f(t)
∣

∣ dt ≤
∫ 1

0

∣

∣f(t)
∣

∣,

i.e., N(f) ≤ ‖f‖1.

3. The second statement is correct. Indeed, assume that the sequence (fn)n∈N converges to f for the norm
‖·‖1. This means that lim

n→+∞
‖fn − f‖1 = 0. Since 0 ≤ N ≤ ‖·‖1 we conclude, by the Squeeze Theorem, that

lim
n→+∞

N(fn − f) = 0, i.e., that (fn)n∈N converges to f for the norm N .

4. a) Let n ∈ N
∗. Then:

N(fn) =

∫ 1/n

0

tn dt+

∫ 1

1/n

dt =
1

2n
+ 1− 1

n
= 1− 1

2n
,

and

‖fn‖1 =

∫ 1/n

0

n dt+

∫ 1

1/n

dt

t
= 1 + ln(n).

b) We proceed by contradiction: assume that N and ‖·‖1 are equivalent. Hence there exists α > 0 such that
α‖·‖1 ≤ N . In particular, for n ∈ N

∗ we have

α‖fn‖1 = α
(

1 + ln(n)
)

≤ N(fn) = 1− 1

2n
.

Taking the limit as n → +∞ yields (since α > 0): +∞ ≤ 1, which is impossible. Hence the norms N and
‖·‖1 are not equivalent.



Exercise 5. Let (hx, hy, hz) ∈ R
3. Then:

f(1 + hx,−2 + hy,−2 + hz) = 3(1 + hx)
2 − (1 + hx)(−2 + hy)− 3(−2 + hy)(−2 + hz) + (−2 + hz)

2

= −3 + 8hx + 5hy + 2hz + 3h2
x − hxhy − 3hyhz + h2

z

= f(1,−2,−2) + 8hx + 5hy + 2hz + 3h2
x − hxhy − 3hyhz + h2

z.

We obtained the constant term, a linear term with respect to (hx, hy, hz) and a remainder. Since R
3 is a finite

dimensional vector space, the linear term is automatically continuous. To prove that f is differentiable at a0 we
only need to prove that the remainder is a o

(

‖(hx, hy, hz)‖
)

: for h = (hx, hy, hz) 6= (0, 0, 0),

∣

∣

∣

∣

3h2
x − hxhy − 3hyhz + h2

z

‖h‖1

∣

∣

∣

∣

≤ 8‖h‖21
‖h‖1

= 8‖h‖1 −→
h→(0,0,0)

0,

where, in the numerator, we used the triangle inequality for the absolute value together with the following useful
inequalities:

|hx| ≤ ‖h‖1 |hy| ≤ ‖h‖1 |hz| ≤ ‖h‖1.

Notice that we chose the 1-norm, but any other norm would produce the same result as all norms are equivalent
on R

3.
Hence f is differentiable at a0 and:

da0
f : R

3 −→ R

(hx, hy, hz) 7−→ 8hx + 5hy + 2hz.


