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Exercise 1.

1. Let h ∈ R
∗. Then:

f(h, 0)− f(0, 0)

h
= 0 −→

h→0
0,

hence ∂1f(0, 0) exists and ∂1f(0, 0) = 0, and

f(0, h)− f(0, 0)

h
= 0 −→

h→0
=

h

h
= 1 −→

h→0
1,

hence ∂2f(0, 0) exists and ∂2f(0, 0) = 1.

2. Let u = (ux, uy) ∈ R
2.

• If uy 6= 0: let t ∈ R
∗. Then:

f(tux, tuy)− f(0, 0)

t
=

t2u2
x ln

(

|tuy|
)

+ tuy

t
= tu2

x ln
(

|tuy|
)

+ uy −→
t→0

uy,

hence ∇uf(0, 0) = uy,

• if uy = 0: let t ∈ R
∗. Then:

f(tux, tuy)− f(0, 0)

t
= 0 −→

t→0
0,

hence ∇uf(0, 0) = 0 = uy.

We conclude that Proposition (P) is true.

3. Observe that lim
t→0

(

t, e−1/t2
)

= (0, 0). Now, for t ∈ R
∗,

f
(

t, e−1/t2
)

= t2 ln
(

e−1/t2
)

+ e−1/t2 = −1 + e−1/t2 −→
t→0

−1 6= f(0, 0) = 0,

hence, by composition of limits, f is not continuous at (0, 0).

4. Since f is not continuous at (0, 0), f is not differentiable at (0, 0).

5. Let (x, y) ∈ R \D. Then:
∂1f(x, y) = 2x ln

(

|y|
)

and

∂2f(x, y) =
x2

y
+ 1.

Hence,
−−→
grad f(x, y) =

(

2x ln
(

|y|
)

,
x2

y
+ 1

)

.

6. Since (1, 1) ∈ R \D we can reuse the previous expressions:

∂1f(1, 1) = 0, ∂2f(1, 1) = 2,

hence
d(1,1)f = 2e′2.

7. f(1.01, 1.02) ≈ f(1, 1) + d(1,1)f(0.01, 0.02) = 1 + 2× 0.02 = 1.04.



8. We compute the second order partial derivatives of f at (1, 1):

∂2
(1,1)f(x, y) = 2 ln

(

|y|
)

, ∂2
(1,1)f(1, 1) = 0,

∂2
(1,2)f(x, y) = 2

x

y
, ∂2

(1,2)f(1, 1) = 2,

∂2
(2,2)f(x, y) = −x2

y2
, ∂2

(2,2)f(1, 1) = −1.

Hence the second order Taylor–Young expansion of f is:

f(1 + hx, 1 + hy) =
(hx,hy)→(0,0)

1 + 2hy + 2hxhy −
1

2
h2
y + o

(

‖(hx, hy)‖2
)

.

Exercise 2.

1. Let (x, y) ∈ U and let (u,w) ∈ U . Then:

ϕ(x, y) = (u,w) ⇐⇒
{

x/y = u

x+ y = w
⇐⇒

{

x = uy

y(1 + u) = w
⇐⇒

{

x = uw/(1 + u)

y = w/(1 + u)

Moreover, uw/(1 + u) ∈ R
∗
+ and w/(1 + u) ∈ R

∗
+, hence ϕ is a bijection and

ϕ−1 : U −→ U

(u,w) 7−→
(

uw

1 + u
,

w

1 + u

)

.

We notice (from elementary operations and usual functions) that both ϕ and ϕ−1 are of class C∞; since ϕ is
a bijection, we conclude that ϕ is a C∞-diffeomorphism.

2. Let (x, y) ∈ U . Then:

J(x,y)ϕ =

(

1/y −x/y2

1 1

)

.

Observe that det J(x,y)ϕ =
x+ y

y2
6= 0, hence J(x,y)ϕ is invertible and

(

J(x,y)ϕ
)−1

=
y2

x+ y

(

1 x/y2

−1 1/y

)

,

Let (u,w) = ϕ(x, y). Then:

J(u,w)

(

ϕ−1
)

=

(

w/(1 + u)− uw/(1 + u)2 u/(1 + u)
−w/(1 + u)2 1/(1 + u)

)

=

(

y2/(x+ y) x/(x+ y)
−y2/(x+ y) y/(x+ y)

)

= (J(u,w)ϕ)
−1.

3. See Figure 2.

4. a) Since g = f ◦ϕ and since ϕ is of class C∞ (hence of class C1), we deduce that if f is of class C1 then g is
of class C1. Conversely, since f = g ◦ ϕ−1, and since ϕ−1 is of class C∞ (hence of class C1), we deduce
that if g is of class C1 then f is of class C1.

b) Let (x, y) ∈ U . From the expression g(x, y) = f(x/y, x+ y) we deduce:

∂1g(x, y) =
1

y
∂1f(x/y, x+ y) + ∂2f(x/y, x+ y)

and
∂2g(x, y) = − x

y2
∂1f(x/y, x+ y) + ∂2f(x/y, x+ y).

c)

∀(u,w) ∈ U, (u+ 1)∂1f(u,w) + w∂2f(u,w) = 0 ⇐⇒ ∀(u,w) ∈ U,
u+ 1

w
∂1f(u,w) + ∂2f(u,w) = 0

⇐⇒ ∀(u,w) ∈ U,
u+ 1

w
∂1f(u,w) + ∂2f(u,w) = 0

⇐⇒ ∀(x, y) ∈ U,
1

y
∂1f(x/y, x+ y) + ∂2f(x/y, x+ y) = 0

⇐⇒ ∀(x, y) ∈ U, ∂1g(x, y) = 0.
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Figure 1. The u- and w-coordinates of Exercise 2: The u-coordinates are the lines passing through the origin,
the w-coordinates are the lines with slope −1.

d) This last equation is easy to solve:
{

g is of class C1

∂1g = 0
⇐⇒ ∃A : R∗

+ → R of class C1, ∀(x, y) ∈ R
2, g(x, y) = A(y).

Hence, the general solution of class C1 of (∗) has the form:

∀(u,w) ∈ R
2, f(u,w) = A

(

w

1 + u

)

,

where A : R∗
+ → R is any function of class C1.

Exercise 3.

1. Let f ∈ E. Then:

∀t ∈ [0, 1], 0 ≤
∣

∣

∣

∣

f(t)√
t

∣

∣

∣

∣

≤ ‖f‖∞√
t

.

By Riemann, we know that the improper integral

∫ 1

0

dt√
t

is convergent, hence the integral defining ϕ(f) is

absolutely convergent, hence convergent.

2. Let f, g ∈ E. Then:

∣

∣ϕ(f)− ϕ(g)
∣

∣ =

∣

∣

∣

∣

∫ 1

0

f(t)− g(t)√
t

dt

∣

∣

∣

∣



≤
∫ 1

0

∣

∣f(t)− g(t)
∣

∣

√
t

dt

≤
∫ 1

0

‖f − g‖∞√
t

dt

= ‖f − g‖∞
∫ 1

0

1√
t
dt

= 2‖f − g‖∞.

3. Since ϕ is linear, we only need to check that ϕ is continuous at 0E . Let f ∈ E. Then, from the previous
question,

∣

∣ϕ(f)
∣

∣ ≤ 2‖f‖∞ −→
‖f‖

∞
→0

0,

and we conclude that ϕ is continuous at 0E .

4. a) Let n ∈ N
∗. Then

N(fn) = sup
t∈[0,1]

∣

∣tf(t)
∣

∣ = sup
t∈[0,1/n]

∣

∣−n
√
nt2 +

√
nt
∣

∣ =
√
n sup

t∈[0,1/n]

∣

∣(1− nt)t
∣

∣ ≤
√
n
1

n
=

1√
n

−→
n→+∞

0.

Hence (fn)n∈N∗ converges to 0E for the norm N .

b) Let n ∈ N
∗. Then:

ϕ(fn) =

∫ 1/n

0

−n
√
nt+

√
n√

t
dt

=

∫ 1/n

0

−n
√
n
√
t+

√
n

1√
t
dt

= −n
√
n

2

3n3/2
+

2√
n

√
n

= −2

3
+ 2 =

4

3
−→

n→+∞

4

3
6= ϕ(0E) = 0,

hence ϕ is not continuous at 0E .

5. Since ϕ is continuous from
(

E, ‖·‖∞
)

but not from (E,N), we conclude that the norms ‖·‖∞ and N are not
equivalent.

Exercise 4.

1. Let (x, y) ∈ R
2. Then:

∂1f(x, y) = 1 + yg′(xy), ∂2f(x, y) = xg′(xy).

2. a) Since C is the level set of f at level 1, we know that a normal vector to ∆ is given by
−−→
grad f(1, 1) =

(

1 + g′(1), g′(1)
)

= (−1,−2). Hence an equation of ∆ is:

∆: − (x− 1)− 2(y − 1) = 0

or, equivalently,
∆: x+ 2y = 3.

b) Since f(1, 1) = 1, we must have ϕ(1) = 1. We differentiate the expression in (∗) and we obtain:

∀x ∈ R, ∂1f
(

x, ϕ(x)
)

+ ϕ′(x)∂2f
(

x, ϕ(x)
)

= 0.

Hence (evaluating at x = 1):
∂1f(1, 1) + ϕ′(1)∂2f(1, 1) = 0,

i.e., −1− 2ϕ′(1) = 0, hence ϕ′(1) = −1/2. Differentiating again yields:

∀x ∈ R, ∂2
1,1f

(

x, ϕ(x)
)

+ 2ϕ′(x)∂2
1,2f

(

x, ϕ(x)
)

+ ϕ′′(x)∂2f
(

x, ϕ(x)
)

+ ϕ′(x)2∂2
2,2f

(

x, ϕ(x)
)

= 0.



Hence (evaluating at x = 1):

∂2
1,1f(1, 1)− ∂2

1,2f(1, 1) + ϕ′′(1)∂2f(1, 1) +
1

4
∂2
2,2f(1, 1) = 0.

We need to determine the second order partial derivatives of f at (1, 1): first, for (x, y) ∈ R
2:

∂2
1,1f(x, y) = y2g′′(xy), ∂2

1,2f(x, y) = g′(xy) + xyg′′(xy), ∂2
2,2f(x, y) = x2g′′(xy),

hence

∂2
1,1f(1, 1) = 1, ∂2

1,2f(1, 1) = −1, ∂2
2,2f(1, 1) = 1.

Hence:
9

4
− 2ϕ′′(1) = 0, and we conclude that ϕ′′(1) = 9/8 > 0, hence the graph of ϕ is above ∆ in a

neighborhood of (1, 1).

See Figure 2. TODO figure.
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Figure 2. Graph of ϕ of Exercise 4 in a neighborhood of (1, 1), as well as its tangent line ∆ at (1, 1).


