Exercise 1.

1. Let $h \in \mathbb{R}^{*}$. Then:

$$
\frac{f(h, 0)-f(0,0)}{h}=0 \underset{h \rightarrow 0}{\longrightarrow} 0,
$$

hence $\partial_{1} f(0,0)$ exists and $\partial_{1} f(0,0)=0$, and

$$
\frac{f(0, h)-f(0,0)}{h}=0 \underset{h \rightarrow 0}{\longrightarrow}=\frac{h}{h}=1 \underset{h \rightarrow 0}{\longrightarrow} 1,
$$

hence $\partial_{2} f(0,0)$ exists and $\partial_{2} f(0,0)=1$.
2. Let $u=\left(u_{x}, u_{y}\right) \in \mathbb{R}^{2}$.

- If $u_{y} \neq 0$: let $t \in \mathbb{R}^{*}$. Then:

$$
\frac{f\left(t u_{x}, t u_{y}\right)-f(0,0)}{t}=\frac{t^{2} u_{x}^{2} \ln \left(\left|t u_{y}\right|\right)+t u_{y}}{t}=t u_{x}^{2} \ln \left(\left|t u_{y}\right|\right)+u_{y} \underset{t \rightarrow 0}{\longrightarrow} u_{y}
$$

hence $\nabla_{u} f(0,0)=u_{y}$,

- if $u_{y}=0$: let $t \in \mathbb{R}^{*}$. Then:

$$
\frac{f\left(t u_{x}, t u_{y}\right)-f(0,0)}{t}=0 \underset{t \rightarrow 0}{\longrightarrow} 0,
$$

hence $\nabla_{u} f(0,0)=0=u_{y}$.
We conclude that Proposition (P) is true
3. Observe that $\lim _{t \rightarrow 0}\left(t, \mathrm{e}^{-1 / t^{2}}\right)=(0,0)$. Now, for $t \in \mathbb{R}^{*}$,

$$
f\left(t, \mathrm{e}^{-1 / t^{2}}\right)=t^{2} \ln \left(\mathrm{e}^{-1 / t^{2}}\right)+\mathrm{e}^{-1 / t^{2}}=-1+\mathrm{e}^{-1 / t^{2}} \underset{t \rightarrow 0}{\longrightarrow}-1 \neq f(0,0)=0,
$$

hence, by composition of limits, f is not continuous at $(0,0)$.
4. Since f is not continuous at $(0,0), f$ is not differentiable at $(0,0)$.
5. Let $(x, y) \in \mathbb{R} \backslash D$. Then:

$$
\partial_{1} f(x, y)=2 x \ln (|y|)
$$

and

$$
\partial_{2} f(x, y)=\frac{x^{2}}{y}+1
$$

Hence,

$$
\overrightarrow{\operatorname{grad}} f(x, y)=\left(2 x \ln (|y|), \frac{x^{2}}{y}+1\right) .
$$

6. Since $(1,1) \in \mathbb{R} \backslash D$ we can reuse the previous expressions:

$$
\partial_{1} f(1,1)=0, \quad \partial_{2} f(1,1)=2,
$$

hence

$$
\mathrm{d}_{(1,1)} f=2 e_{2}^{\prime} .
$$

7. $f(1.01,1.02) \approx f(1,1)+\mathrm{d}_{(1,1)} f(0.01,0.02)=1+2 \times 0.02=1.04$.
8. We compute the second order partial derivatives of f at $(1,1)$:

$$
\begin{aligned}
\partial_{(1,1)}^{2} f(x, y) & =2 \ln (|y|) \\
\partial_{(1,2)}^{2} f(x, y) & =2 \frac{x}{y} \\
\partial_{(2,2)}^{2} f(x, y) & =-\frac{x^{2}}{y^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \partial_{(1,1)}^{2} f(1,1)=0 \\
& \partial_{(1,2)}^{2} f(1,1)=2 \\
& \partial_{(2,2)}^{2} f(1,1)=-1
\end{aligned}
$$

Hence the second order Taylor-Young expansion of f is:

$$
f\left(1+h_{x}, 1+h_{y}\right)_{\left(h_{x}, h_{y}\right) \rightarrow(0,0)}^{=} 1+2 h_{y}+2 h_{x} h_{y}-\frac{1}{2} h_{y}^{2}+o\left(\left\|\left(h_{x}, h_{y}\right)\right\|^{2}\right)
$$

Exercise 2.

1. Let $(x, y) \in U$ and let $(u, w) \in U$. Then:

$$
\varphi(x, y)=(u, w) \Longleftrightarrow\left\{\begin{array} { l }
{ x / y = u } \\
{ x + y = w }
\end{array} \Longleftrightarrow \left\{\begin{array} { l }
{ x = u y } \\
{ y (1 + u) = w }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x=u w /(1+u) \\
y=w /(1+u)
\end{array}\right.\right.\right.
$$

Moreover, $u w /(1+u) \in \mathbb{R}_{+}^{*}$ and $w /(1+u) \in \mathbb{R}_{+}^{*}$, hence φ is a bijection and

$$
\begin{aligned}
\varphi^{-1}: \quad U & \longrightarrow \\
(u, w) & \longmapsto\left(\frac{u w}{1+u}, \frac{w}{1+u}\right) .
\end{aligned}
$$

We notice (from elementary operations and usual functions) that both φ and φ^{-1} are of class C^{∞}; since φ is a bijection, we conclude that φ is a C^{∞}-diffeomorphism.
2. Let $(x, y) \in U$. Then:

$$
J_{(x, y)} \varphi=\left(\begin{array}{cc}
1 / y & -x / y^{2} \\
1 & 1
\end{array}\right)
$$

Observe that $\operatorname{det} J_{(x, y)} \varphi=\frac{x+y}{y^{2}} \neq 0$, hence $J_{(x, y)} \varphi$ is invertible and

$$
\left(J_{(x, y)} \varphi\right)^{-1}=\frac{y^{2}}{x+y}\left(\begin{array}{cc}
1 & x / y^{2} \\
-1 & 1 / y
\end{array}\right)
$$

Let $(u, w)=\varphi(x, y)$. Then:

$$
J_{(u, w)}\left(\varphi^{-1}\right)=\left(\begin{array}{cc}
w /(1+u)-u w /(1+u)^{2} & u /(1+u) \\
-w /(1+u)^{2} & 1 /(1+u)
\end{array}\right)=\left(\begin{array}{cc}
y^{2} /(x+y) & x /(x+y) \\
-y^{2} /(x+y) & y /(x+y)
\end{array}\right)=\left(J_{(u, w)} \varphi\right)^{-1} .
$$

3. See Figure 2.

4. a) Since $g=f \circ \varphi$ and since φ is of class C^{∞} (hence of class C^{1}), we deduce that if f is of class C^{1} then g is of class C^{1}. Conversely, since $f=g \circ \varphi^{-1}$, and since φ^{-1} is of class C^{∞} (hence of class C^{1}), we deduce that if g is of class C^{1} then f is of class C^{1}.
b) Let $(x, y) \in U$. From the expression $g(x, y)=f(x / y, x+y)$ we deduce:

$$
\partial_{1} g(x, y)=\frac{1}{y} \partial_{1} f(x / y, x+y)+\partial_{2} f(x / y, x+y)
$$

and

$$
\partial_{2} g(x, y)=-\frac{x}{y^{2}} \partial_{1} f(x / y, x+y)+\partial_{2} f(x / y, x+y)
$$

c)

$$
\begin{aligned}
\forall(u, w) \in U,(u+1) \partial_{1} f(u, w)+w \partial_{2} f(u, w)=0 & \Longleftrightarrow \forall(u, w) \in U, \frac{u+1}{w} \partial_{1} f(u, w)+\partial_{2} f(u, w)=0 \\
& \Longleftrightarrow \forall(u, w) \in U, \frac{u+1}{w} \partial_{1} f(u, w)+\partial_{2} f(u, w)=0 \\
& \Longleftrightarrow \forall(x, y) \in U, \frac{1}{y} \partial_{1} f(x / y, x+y)+\partial_{2} f(x / y, x+y)=0 \\
& \Longleftrightarrow \forall(x, y) \in U, \partial_{1} g(x, y)=0
\end{aligned}
$$

Figure 1. The u - and w-coordinates of Exercise 2: The u-coordinates are the lines passing through the origin, the w-coordinates are the lines with slope -1 .
d) This last equation is easy to solve:

$$
\left\{\begin{array}{l}
g \text { is of class } C^{1} \\
\partial_{1} g=0
\end{array} \Longleftrightarrow \exists A: \mathbb{R}_{+}^{*} \rightarrow \mathbb{R} \text { of class } C^{1}, \forall(x, y) \in \mathbb{R}^{2}, g(x, y)=A(y)\right.
$$

Hence, the general solution of class C^{1} of $(*)$ has the form:

$$
\forall(u, w) \in \mathbb{R}^{2}, f(u, w)=A\left(\frac{w}{1+u}\right)
$$

where $A: \mathbb{R}_{+}^{*} \rightarrow \mathbb{R}$ is any function of class C^{1}.

Exercise 3.

1. Let $f \in E$. Then:

$$
\forall t \in[0,1], 0 \leq\left|\frac{f(t)}{\sqrt{t}}\right| \leq \frac{\|f\|_{\infty}}{\sqrt{t}}
$$

By Riemann, we know that the improper integral $\int_{0}^{1} \frac{\mathrm{~d} t}{\sqrt{t}}$ is convergent, hence the integral defining $\varphi(f)$ is absolutely convergent, hence convergent.
2. Let $f, g \in E$. Then:

$$
|\varphi(f)-\varphi(g)|=\left|\int_{0}^{1} \frac{f(t)-g(t)}{\sqrt{t}} \mathrm{~d} t\right|
$$

$$
\begin{aligned}
& \leq \int_{0}^{1} \frac{|f(t)-g(t)|}{\sqrt{t}} \mathrm{~d} t \\
& \leq \int_{0}^{1} \frac{\|f-g\|_{\infty}}{\sqrt{t}} \mathrm{~d} t \\
& =\|f-g\|_{\infty} \int_{0}^{1} \frac{1}{\sqrt{t}} \mathrm{~d} t \\
& =2\|f-g\|_{\infty} .
\end{aligned}
$$

3. Since φ is linear, we only need to check that φ is continuous at 0_{E}. Let $f \in E$. Then, from the previous question,

$$
|\varphi(f)| \leq 2\|f\|_{\infty} \xrightarrow[\|f\|_{\infty} \rightarrow 0]{\longrightarrow} 0,
$$

and we conclude that φ is continuous at 0_{E}.
4. a) Let $n \in \mathbb{N}^{*}$. Then

$$
N\left(f_{n}\right)=\sup _{t \in[0,1]}|t f(t)|=\sup _{t \in[0,1 / n]}\left|-n \sqrt{n} t^{2}+\sqrt{n} t\right|=\sqrt{n} \sup _{t \in[0,1 / n]}|(1-n t) t| \leq \sqrt{n} \frac{1}{n}=\frac{1}{\sqrt{n}} \underset{n \rightarrow+\infty}{\longrightarrow} 0 .
$$

Hence $\left(f_{n}\right)_{n \in \mathbb{N}^{*}}$ converges to 0_{E} for the norm N.
b) Let $n \in \mathbb{N}^{*}$. Then:

$$
\begin{aligned}
\varphi\left(f_{n}\right) & =\int_{0}^{1 / n} \frac{-n \sqrt{n} t+\sqrt{n}}{\sqrt{t}} \mathrm{~d} t \\
& =\int_{0}^{1 / n}-n \sqrt{n} \sqrt{t}+\sqrt{n} \frac{1}{\sqrt{t}} \mathrm{~d} t \\
& =-n \sqrt{n} \frac{2}{3 n^{3 / 2}}+\frac{2}{\sqrt{n}} \sqrt{n} \\
& =-\frac{2}{3}+2=\frac{4}{3} \underset{n \rightarrow+\infty}{\longrightarrow} \frac{4}{3} \neq \varphi\left(0_{E}\right)=0,
\end{aligned}
$$

hence φ is not continuous at 0_{E}.
5. Since φ is continuous from $\left(E,\|\cdot\|_{\infty}\right)$ but not from (E, N), we conclude that the norms $\|\cdot\|_{\infty}$ and N are not equivalent.

Exercise 4.

1. Let $(x, y) \in \mathbb{R}^{2}$. Then:

$$
\partial_{1} f(x, y)=1+y g^{\prime}(x y), \quad \partial_{2} f(x, y)=x g^{\prime}(x y) .
$$

2. a) Since C is the level set of f at level 1 , we know that a normal vector to Δ is given by $\overrightarrow{\text { grad }} f(1,1)=$ $\left(1+g^{\prime}(1), g^{\prime}(1)\right)=(-1,-2)$. Hence an equation of Δ is:

$$
\Delta:-(x-1)-2(y-1)=0
$$

or, equivalently,

$$
\Delta: x+2 y=3 .
$$

b) Since $f(1,1)=1$, we must have $\varphi(1)=1$. We differentiate the expression in $(*)$ and we obtain:

$$
\forall x \in \mathbb{R}, \partial_{1} f(x, \varphi(x))+\varphi^{\prime}(x) \partial_{2} f(x, \varphi(x))=0 .
$$

Hence (evaluating at $x=1$):

$$
\partial_{1} f(1,1)+\varphi^{\prime}(1) \partial_{2} f(1,1)=0,
$$

i.e., $-1-2 \varphi^{\prime}(1)=0$, hence $\varphi^{\prime}(1)=-1 / 2$. Differentiating again yields:

$$
\forall x \in \mathbb{R}, \partial_{1,1}^{2} f(x, \varphi(x))+2 \varphi^{\prime}(x) \partial_{1,2}^{2} f(x, \varphi(x))+\varphi^{\prime \prime}(x) \partial_{2} f(x, \varphi(x))+\varphi^{\prime}(x)^{2} \partial_{2,2}^{2} f(x, \varphi(x))=0 .
$$

Hence (evaluating at $x=1$):

$$
\partial_{1,1}^{2} f(1,1)-\partial_{1,2}^{2} f(1,1)+\varphi^{\prime \prime}(1) \partial_{2} f(1,1)+\frac{1}{4} \partial_{2,2}^{2} f(1,1)=0 .
$$

We need to determine the second order partial derivatives of f at $(1,1)$: first, for $(x, y) \in \mathbb{R}^{2}$:

$$
\partial_{1,1}^{2} f(x, y)=y^{2} g^{\prime \prime}(x y), \quad \partial_{1,2}^{2} f(x, y)=g^{\prime}(x y)+x y g^{\prime \prime}(x y), \quad \partial_{2,2}^{2} f(x, y)=x^{2} g^{\prime \prime}(x y)
$$

hence

$$
\partial_{1,1}^{2} f(1,1)=1, \quad \partial_{1,2}^{2} f(1,1)=-1, \quad \quad \partial_{2,2}^{2} f(1,1)=1
$$

Hence: $\frac{9}{4}-2 \varphi^{\prime \prime}(1)=0$, and we conclude that $\varphi^{\prime \prime}(1)=9 / 8>0$, hence the graph of φ is above Δ in a neighborhood of $(1,1)$.
See Figure 2. TODO figure.

Figure 2. Graph of φ of Exercise 4 in a neighborhood of $(1,1)$, as well as its tangent line Δ at $(1,1)$.

