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Exercise 1.

1. We apply the Implicit Function Theorem to the function f at A:

• The function f is of class C∞ on R,

• f(A) = 0,

• ∂3f(1, 0,−1) = 3 6= 0,

hence, by the Implicit Function Theorem, there exists an open neighborhood V of (1, 0) in R
2 and an open

interval W containing −1, as well as a function ϕ : V →W , of class C∞ such that:

∀(x, y) ∈ V, ∀z ∈W,
(

f(x, y, z) = 0 ⇐⇒ z = ϕ(y, z)
)

.

and ϕ(1, 0) = −1.

2. It’s possible to answer this question by writing the first order Taylor–Young expansion of ϕ at (1, 0). But
here it’s probably simpler to just use the gradient of f at A:

∇f(A) = (2, 0, 3),

so that an equation of the tangent plane to S at A is:1

2(x− 1) + 3(z + 1) = 0.

3. By the “moreover” part of the Implicit Function Theorem, we know the form of the first order partial derivatives
of ϕ: for (x, y) ∈ V ,

∂1ϕ(x, y) = −
∂1f

(

x, y, ϕ(x, y)
)

∂3f
(

x, y, ϕ(x, y)
) ∂2ϕ(x, y) = −

∂2f
(

x, y, ϕ(x, y)
)

∂3f
(

x, y, ϕ(x, y)
)

=
y3 − 2x

−y2 + 3ϕ(x, y)2
=

3xy2 + 2yϕ(x, y)

−y2 + 3ϕ(x, y)2

Since ϕ is of class C2, we can compute ∂2(∂1ϕ)(1, 0). We then need to differentiate the expression ∂1ϕ(x, y)
with respect to y and evaluate at (1, 0). We’re going to decompose the computation as follows: for (x, y) ∈ V ,
define:

N(x, y) = −y2 + 2x and D(x, y) = −y2 + 3ϕ(x, y)2.

Notice that N and D are the numerator and the denominator of the fraction I wrote for the value of ∂1ϕ(x, y).
Then, ∂2N(1, 0) = 0 and, noticing that ∂2ϕ(1, 0) = 0 yields:

∂2D(1, 0) = 6∂2ϕ(1, 0)ϕ(1, 0) = −6∂2ϕ(1, 0) = 0.

So that, according to the quotient rule:

∂21,2ϕ(1, 0) =
∂2N(1, 0)D(1, 0)−N(1, 0)∂2D(1, 0)

D(1, 0)2
= 0.

4. Let (x, y, z) ∈ S. Then, by definition of S, f(x, y, z) = 0, hence, by definition of f , x2 − xy3 − y2z + z3 = 0,
hence (by the standard sign rules):

(−x)2 − (−x)(−y)3 − (−y)2z + z3 = 0

hence, by definition of f , f(−x,−y, z) = 0, hence, by definition of S, (−x,−y, z) ∈ S.

1or, equivalently 2x+ 3z = −1 or, equivalently, z = −

1

3
(1 + 2x).



Exercise 2.

1. Let g : R2 → R of class C2. Then:

{

g is of class C2

∀(u, v) ∈ R
2, ∂21,2g(u, v) = u+ v

⇐⇒

{

g is of class C2

∀(u, v) ∈ R
2, ∂21,2g(u, v) = u+ v

⇐⇒

{

g is of class C2

∃ϕ : R → R of class C1, ∀(u, v) ∈ R
2, ∂2g(u, v) =

u2

2 + uv + ϕ(v)

⇐⇒











g is of class C2

∃Φ : R → R of class C2, ∃Ψ : R → R of class C1,

∀(u, v) ∈ R
2, g(u, v) = u2

2 v + u v2

2 +Φ(v) + Ψ(u)

⇐⇒ ∃Φ : R → R of class C2, ∃Ψ : R → R of class C2,

∀(u, v) ∈ R
2, g(u, v) =

u2

2
v + u

v2

2
+ Φ(v) + Ψ(u).

2. a) See Figure 3.
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Figure 3. Representation of the set U of Exercise 2

b) For (x, y) ∈ U ,

J(x,y)ϕ =

(

0 ey

y x

)



c) Let (x, y) ∈ U and (u, v) ∈ V . Note that u > 0 Then:

ϕ(x, y) = (u, v) ⇐⇒

{

u = ey

v = xy
⇐⇒







y = ln(u)

x =
v

ln(u)
.

Moreover, for (u, v) ∈ V , x ∈ R and y < 0 hence (x, y) ∈ U . Hence, ϕ is a bijection and its inverse is
described by:

ψ = ϕ−1 : V −→ U

(u, v) 7−→

(

v

ln(u)
, ln(u)

)

.

Clearly, ϕ and ϕ−1 are of class C∞, hence ϕ is a C∞-diffeomorphism.

d) For (x, y) ∈ U ,

Jϕ(x,y)

(

ϕ−1
)

=
(

J(x,y)ϕ
)

−1
.

e) See Figure 4.
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Figure 4. Coordinates associated with the diffeomorphism ϕ of Exercise 2.

f) Let f : U → R of class C2 and define:

g : V −→ R

(u, v) 7−→ f

(

v

ln(u)
, ln(u)

)

.

Then, since ψ and f are of class C2, g is also of class C2. For (u, v) ∈ V ,

∂2g(u, v) =
1

ln(u)
∂1f

(

v

ln(u)
, ln(u)

)



and, setting (x, y) = ψ(u, v),

∂21,2g(u, v) = −
1

u ln(u)2
∂1f(x, y)−

v

u ln(u)3
∂21,1f(x, y) +

1

u ln(u)
∂22,1f(x, y)

= −
1

y2ey
∂1f(x, y)−

x

y2ey
∂21,1f(x, y) +

1

yey
∂22,1f(x, y)

= −
1

y2ey
(

∂1f(x, y) + x∂21,1f(x, y)− y∂22,1f(x, y)
)

= −
1

y2ey
(

∂1f(x, y) + x∂21,1f(x, y)− y∂22,1f(x, y)
)

−
1

y2ey
(

∂1f(x, y) + x∂21,1f(x, y)− y∂22,1f(x, y) + xy3ey + y2e2y
)

= ∂21,2g(u, v)− xy − ey

= ∂21,2g(u, v)− u− v.

We hence conclude that:

f is a solution of (E) ⇐⇒ ∀(u, v) ∈ V, ∂21,2g(u, v) = u+ v.

g) Hence, from the preliminary question,

f is a solution of (E) ⇐⇒ ∀(u, v) ∈ V, ∂21,2g(u, v) = u+ v

⇐⇒ ∃Φ : (1/2, 1) → R of class C2, ∃Ψ : (0, 1) → R of class C2,

∀(u, v) ∈ V, g(u, v) =
1

2
uv(u+ v) + Φ(v) + Ψ(u)

⇐⇒ ∃Φ : (1/2, 1) → R of class C2, ∃Ψ : (0, 1) → R of class C2,

∀(u, v) ∈ V, g(u, v) =
1

2
uv(u+ v) + Φ(v) + Ψ(u)

⇐⇒ ∃Φ : (1/2, 1) → R of class C2, ∃Ψ : (0, 1) → R of class C2,

∀(x, y) ∈ U, f(x, y) =
1

2
xyey

(

ey + xy
)

+Φ(xy) + Ψ
(

ex
)

.

Exercise 3.

1. f is clearly of class C1 on R
2 \

{

(0, 0)
}

, and for (x, y) ∈ R
2 \

{

(0, 0)
}

,

∂1f(x, y) = −
2xy4

(

x2 + y2
)2 ∂2f(x, y) =

2(2x2 + y2)y3
(

x2 + y2
)2 .

Now, the partial derivatives at (0, 0): for t ∈ R
∗,

f(t, 0)− f(0, 0)

t
= 0 −→

t→0
0

f(0, t)− f(0, 0)

t
=
t4

t2
= t2 −→

t→0
0.

Hence the first order partial derivatives of f exist at (0, 0) and

∂1f(0, 0) = ∂2f(0, 0) = 0.

Now, for (x, y) 6= (0, 0),

|∂1f(x, y)− ∂1f(0, 0)| ≤
2‖(x, y)‖52
‖(x, y)‖42

= 2‖(x, y)‖2 −→
(x,y)→(0,0)

0

|∂2f(x, y)− ∂2f(0, 0)| ≤
6‖(x, y)‖52
‖(x, y)‖42

= 6‖(x, y)‖2 −→
(x,y)→(0,0)

0.

Hence ∂1f and ∂2f are continuous at (0, 0). Hence ∂1f and ∂2f are continuous on R
2, and we conclude that

f is of class C1 on R
2.



2. We compute the second order partial derivatives of f at (1, 1) (note that f is clearly of class C2 in a
neighborhood of (1, 1)): for (x, y) 6= (0, 0):

∂21,1f(x, y) =
2(3x2 − y2)y4
(

x2 + y2
)3

∂21,2f(x, y) = −
8x3y3

(

x2 + y2
)3

∂22,2f(x, y) =
2
(

6x4 + 3x2y2 + 2y4
)

y2
(

x2 + y2
)3

Hence the Hessian matrix of f at (1, 1) is:

H(1,1)f =

(

1/2 −1
−1 5/2

)

.

We also obtained

∂1f(1, 1) = −1/2 ∂2f(1, 1) = 3/2

and f(1, 1) = 1/2 so that:

f(1 + hx, 1 + hy) =
(hx,hy)→(0,0)

1

2
−

1

2
hx +

3

2
hy +

1

2

(

1

2
h2x − 2hxhy +

5

2
h2y

)

+ o
(

x2 + y2
)

.

3. For t ∈ R
∗:

∂1f(0, t)− ∂1f(0, 0)

t
= 0 −→

t→0
0

∂2f(t, 0)− ∂2f(0, 0)

t
= 0 −→

t→0
0

hence ∂21,2f(0, 0) = ∂22,1f(0, 0) = 0.

4. Let x ∈ R
∗. Then: ∂1,2f(x, x) = −1.

5. Let y ∈ R
∗. Then: ∂1,2f(0, y) = 0.

6. We have, on the one hand:
∂1,2f(x, x) −→

x→0
−1

and (x, x) −→
x→0

(0, 0). Hence, if the limit of ∂21,2f existed at (0, 0), its value would be −1.

On the other hand:
∂1,2f(0, y) −→

x→0
0

hence, if the limit of ∂21,2f existed at (0, 0), its value would be 0.

Since 0 6= −1, and by uniqueness of the limit of a function at a point, we conclude that ∂21,2f is not continuous
at (0, 0), hence f is not of class C2.

Exercise 4.

1. Let n ∈ N
∗. Then,

0 ≤
1

3nn1/3
≤

1

3n
.

Now the sequence (1/3n)n is a geometric sequence of ratio 1/3 ∈ (−1, 1), hence the series
∑

n 1/3n converges.
We conclude, by the comparison test, that (S) converges.

Since
1

3nn1/3
−→

n→+∞

0,

and e1/n −→
n→+∞

1 we have:

ln

(

1 +
1

3nn1/3

)

e1/n ∼
n→+∞

1

3nn1/3
> 0

hence, by the equivalent test, (S′) and (S) have the same nature, hence (S′) converges.



2.

e1/n
2

−
1

n2
−→

n→+∞

1 6= 0

hence the series (T ) diverges.

3. For n ∈ N
∗ define

un =
(

1 +
α

n

)

−n2

.

Clearly, for n ∈ N
∗, un ≥ 0, and:

u1/nn =
(

1 +
α

n

)

−n

=
1

(

1 + α
n

)n −→
n→+∞

e−α < 1 since α > 0.

By the root test, we conclude that (R) converges.


