Exercise 1.

1. We apply the Implicit Function Theorem to the function f at A :

- The function f is of class C^{∞} on \mathbb{R},
- $f(A)=0$,
- $\partial_{3} f(1,0,-1)=3 \neq 0$,
hence, by the Implicit Function Theorem, there exists an open neighborhood V of $(1,0)$ in \mathbb{R}^{2} and an open interval W containing -1 , as well as a function $\varphi: V \rightarrow W$, of class C^{∞} such that:

$$
\forall(x, y) \in V, \forall z \in W,(f(x, y, z)=0 \Longleftrightarrow z=\varphi(y, z)) .
$$

and $\varphi(1,0)=-1$.
2. It's possible to answer this question by writing the first order Taylor-Young expansion of φ at $(1,0)$. But here it's probably simpler to just use the gradient of f at A :

$$
\nabla f(A)=(2,0,3),
$$

so that an equation of the tangent plane to S at A is: ${ }^{1}$

$$
2(x-1)+3(z+1)=0 .
$$

3. By the "moreover" part of the Implicit Function Theorem, we know the form of the first order partial derivatives of φ : for $(x, y) \in V$,

$$
\begin{aligned}
\partial_{1} \varphi(x, y) & =-\frac{\partial_{1} f(x, y, \varphi(x, y))}{\partial_{3} f(x, y, \varphi(x, y))} \\
& =\frac{y^{3}-2 x}{-y^{2}+3 \varphi(x, y)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\partial_{2} \varphi(x, y) & =-\frac{\partial_{2} f(x, y, \varphi(x, y))}{\partial_{3} f(x, y, \varphi(x, y))} \\
& =\frac{3 x y^{2}+2 y \varphi(x, y)}{-y^{2}+3 \varphi(x, y)^{2}}
\end{aligned}
$$

Since φ is of class C^{2}, we can compute $\partial_{2}\left(\partial_{1} \varphi\right)(1,0)$. We then need to differentiate the expression $\partial_{1} \varphi(x, y)$ with respect to y and evaluate at $(1,0)$. We're going to decompose the computation as follows: for $(x, y) \in V$, define:

$$
N(x, y)=-y^{2}+2 x \quad \text { and } \quad D(x, y)=-y^{2}+3 \varphi(x, y)^{2}
$$

Notice that N and D are the numerator and the denominator of the fraction I wrote for the value of $\partial_{1} \varphi(x, y)$. Then, $\partial_{2} N(1,0)=0$ and, noticing that $\partial_{2} \varphi(1,0)=0$ yields:

$$
\partial_{2} D(1,0)=6 \partial_{2} \varphi(1,0) \varphi(1,0)=-6 \partial_{2} \varphi(1,0)=0
$$

So that, according to the quotient rule:

$$
\partial_{1,2}^{2} \varphi(1,0)=\frac{\partial_{2} N(1,0) D(1,0)-N(1,0) \partial_{2} D(1,0)}{D(1,0)^{2}}=0 .
$$

4. Let $(x, y, z) \in S$. Then, by definition of $S, f(x, y, z)=0$, hence, by definition of $f, x^{2}-x y^{3}-y^{2} z+z^{3}=0$, hence (by the standard sign rules):

$$
(-x)^{2}-(-x)(-y)^{3}-(-y)^{2} z+z^{3}=0
$$

hence, by definition of $f, f(-x,-y, z)=0$, hence, by definition of $S,(-x,-y, z) \in S$.

[^0]
Exercise 2.

1. Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ of class C^{2}. Then:

$$
\begin{aligned}
&\left\{\begin{array}{l}
g \text { is of class } C^{2} \\
\forall(u, v) \in \mathbb{R}^{2}, \partial_{1,2}^{2} g(u, v)=u+v
\end{array}\right. \Longleftrightarrow\left\{\begin{array}{l}
g \text { is of class } C^{2} \\
\forall(u, v) \in \mathbb{R}^{2}, \partial_{1,2}^{2} g(u, v)=u+v
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{array}{l}
g \text { is of class } C^{2} \\
\exists \varphi: \mathbb{R} \rightarrow \mathbb{R} \text { of class } C^{1}, \forall(u, v) \in \mathbb{R}^{2}, \partial_{2} g(u, v)=\frac{u^{2}}{2}+u v+\varphi(v)
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{array}{r}
g \text { is of class } C^{2} \\
\exists \Phi: \mathbb{R} \rightarrow \mathbb{R} \text { of class } C^{2}, \exists \Psi: \mathbb{R} \rightarrow \mathbb{R} \text { of class } C^{1}, \\
\forall(u, v) \in \mathbb{R}^{2}, g(u, v)=\frac{u^{2}}{2} v+u \frac{v^{2}}{2}+\Phi(v)+\Psi(u) \\
\end{array} \Longleftrightarrow \exists \Phi: \mathbb{R} \rightarrow \mathbb{R} \text { of class } C^{2}, \exists \Psi: \mathbb{R} \rightarrow \mathbb{R} \text { of class } C^{2},\right. \\
& \forall(u, v) \in \mathbb{R}^{2}, g(u, v)=\frac{u^{2}}{2} v+u \frac{v^{2}}{2}+\Phi(v)+\Psi(u) .
\end{aligned}
$$

2. a) See Figure 3.

Figure 3. Representation of the set U of Exercise 2
b) For $(x, y) \in U$,

$$
J_{(x, y)} \varphi=\left(\begin{array}{cc}
0 & \mathrm{e}^{y} \\
y & x
\end{array}\right)
$$

c) Let $(x, y) \in U$ and $(u, v) \in V$. Note that $u>0$ Then:

$$
\varphi(x, y)=(u, v) \Longleftrightarrow\left\{\begin{array} { l }
{ u = \mathrm { e } ^ { y } } \\
{ v = x y }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
y=\ln (u) \\
x=\frac{v}{\ln (u)} .
\end{array}\right.\right.
$$

Moreover, for $(u, v) \in V, x \in \mathbb{R}$ and $y<0$ hence $(x, y) \in U$. Hence, φ is a bijection and its inverse is described by:

$$
\begin{aligned}
\psi=\varphi^{-1}: \quad V & \longrightarrow \\
(u, v) & \longmapsto\left(\frac{v}{\ln (u)}, \ln (u)\right) .
\end{aligned}
$$

Clearly, φ and φ^{-1} are of class C^{∞}, hence φ is a C^{∞}-diffeomorphism.
d) For $(x, y) \in U$,

$$
J_{\varphi(x, y)}\left(\varphi^{-1}\right)=\left(J_{(x, y)} \varphi\right)^{-1}
$$

e) See Figure 4.

Figure 4. Coordinates associated with the diffeomorphism φ of Exercise 2.
f) Let $f: U \rightarrow \mathbb{R}$ of class C^{2} and define:

$$
\begin{aligned}
g: \quad V & \longrightarrow \mathbb{R} \\
(u, v) & \longmapsto f\left(\frac{v}{\ln (u)}, \ln (u)\right) .
\end{aligned}
$$

Then, since ψ and f are of class C^{2}, g is also of class C^{2}. For $(u, v) \in V$,

$$
\partial_{2} g(u, v)=\frac{1}{\ln (u)} \partial_{1} f\left(\frac{v}{\ln (u)}, \ln (u)\right)
$$

and, setting $(x, y)=\psi(u, v)$,

$$
\begin{aligned}
\partial_{1,2}^{2} g(u, v) & =-\frac{1}{u \ln (u)^{2}} \partial_{1} f(x, y)-\frac{v}{u \ln (u)^{3}} \partial_{1,1}^{2} f(x, y)+\frac{1}{u \ln (u)} \partial_{2,1}^{2} f(x, y) \\
& =-\frac{1}{y^{2} \mathrm{e}^{y}} \partial_{1} f(x, y)-\frac{x}{y^{2} \mathrm{e}^{y}} \partial_{1,1}^{2} f(x, y)+\frac{1}{y \mathrm{e}^{y}} \partial_{2,1}^{2} f(x, y) \\
& =-\frac{1}{y^{2} \mathrm{e}^{y}}\left(\partial_{1} f(x, y)+x \partial_{1,1}^{2} f(x, y)-y \partial_{2,1}^{2} f(x, y)\right) \\
& =-\frac{1}{y^{2} \mathrm{e}^{y}}\left(\partial_{1} f(x, y)+x \partial_{1,1}^{2} f(x, y)-y \partial_{2,1}^{2} f(x, y)\right) \\
-\frac{1}{y^{2} \mathrm{e}^{y}}\left(\partial_{1} f(x, y)+x \partial_{1,1}^{2} f(x, y)-y \partial_{2,1}^{2} f(x, y)+x y^{3} \mathrm{e}^{y}+y^{2} \mathrm{e}^{2 y}\right) & =\partial_{1,2}^{2} g(u, v)-x y-\mathrm{e}^{y} \\
& =\partial_{1,2}^{2} g(u, v)-u-v .
\end{aligned}
$$

We hence conclude that:

$$
f \text { is a solution of }(\mathrm{E}) \Longleftrightarrow \forall(u, v) \in V, \partial_{1,2}^{2} g(u, v)=u+v .
$$

g) Hence, from the preliminary question,

$$
\begin{aligned}
& f \text { is a solution of }(\mathrm{E}) \Longleftrightarrow \forall(u, v) \in V, \partial_{1,2}^{2} g(u, v)=u+v \\
& \Longleftrightarrow \exists \Phi:(1 / 2,1) \rightarrow \mathbb{R} \text { of class } C^{2}, \exists \Psi:(0,1) \rightarrow \mathbb{R} \text { of class } C^{2}, \\
& \forall(u, v) \in V, g(u, v)=\frac{1}{2} u v(u+v)+\Phi(v)+\Psi(u) \\
& \Longleftrightarrow \exists \Phi:(1 / 2,1) \rightarrow \mathbb{R} \text { of class } C^{2}, \exists \Psi:(0,1) \rightarrow \mathbb{R} \text { of class } C^{2}, \\
& \forall(u, v) \in V, g(u, v)=\frac{1}{2} u v(u+v)+\Phi(v)+\Psi(u) \\
& \Longleftrightarrow \exists \Phi:(1 / 2,1) \rightarrow \mathbb{R} \text { of class } C^{2}, \exists \Psi:(0,1) \rightarrow \mathbb{R} \text { of class } C^{2}, \\
& \forall(x, y) \in U, f(x, y)=\frac{1}{2} x y \mathrm{e}^{y}\left(\mathrm{e}^{y}+x y\right)+\Phi(x y)+\Psi\left(\mathrm{e}^{x}\right) .
\end{aligned}
$$

Exercise 3.

1. f is clearly of class C^{1} on $\mathbb{R}^{2} \backslash\{(0,0)\}$, and for $(x, y) \in \mathbb{R}^{2} \backslash\{(0,0)\}$,

$$
\partial_{1} f(x, y)=-\frac{2 x y^{4}}{\left(x^{2}+y^{2}\right)^{2}} \quad \partial_{2} f(x, y)=\frac{2\left(2 x^{2}+y^{2}\right) y^{3}}{\left(x^{2}+y^{2}\right)^{2}}
$$

Now, the partial derivatives at $(0,0)$: for $t \in \mathbb{R}^{*}$,

$$
\begin{aligned}
& \frac{f(t, 0)-f(0,0)}{t}=0 \underset{t \rightarrow 0}{\longrightarrow} 0 \\
& \frac{f(0, t)-f(0,0)}{t}=\frac{t^{4}}{t^{2}}=t^{2} \underset{t \rightarrow 0}{\longrightarrow} 0 .
\end{aligned}
$$

Hence the first order partial derivatives of f exist at $(0,0)$ and

$$
\partial_{1} f(0,0)=\partial_{2} f(0,0)=0
$$

Now, for $(x, y) \neq(0,0)$,

$$
\begin{aligned}
& \left|\partial_{1} f(x, y)-\partial_{1} f(0,0)\right| \leq \frac{2\|(x, y)\|_{2}^{5}}{\|(x, y)\|_{2}^{4}}=2\|(x, y)\|_{2} \underset{(x, y) \rightarrow(0,0)}{\longrightarrow} 0 \\
& \left|\partial_{2} f(x, y)-\partial_{2} f(0,0)\right| \leq \frac{6\|(x, y)\|_{2}^{5}}{\|(x, y)\|_{2}^{4}}=6\|(x, y)\|_{2} \underset{(x, y) \rightarrow(0,0)}{\longrightarrow} 0 .
\end{aligned}
$$

Hence $\partial_{1} f$ and $\partial_{2} f$ are continuous at $(0,0)$. Hence $\partial_{1} f$ and $\partial_{2} f$ are continuous on \mathbb{R}^{2}, and we conclude that f is of class C^{1} on \mathbb{R}^{2}.
2. We compute the second order partial derivatives of f at $(1,1)$ (note that f is clearly of class C^{2} in a neighborhood of $(1,1))$: for $(x, y) \neq(0,0)$:

$$
\begin{aligned}
& \partial_{1,1}^{2} f(x, y)=\frac{2\left(3 x^{2}-y^{2}\right) y^{4}}{\left(x^{2}+y^{2}\right)^{3}} \\
& \partial_{1,2}^{2} f(x, y)=-\frac{8 x^{3} y^{3}}{\left(x^{2}+y^{2}\right)^{3}} \\
& \partial_{2,2}^{2} f(x, y)=\frac{2\left(6 x^{4}+3 x^{2} y^{2}+2 y^{4}\right) y^{2}}{\left(x^{2}+y^{2}\right)^{3}}
\end{aligned}
$$

Hence the Hessian matrix of f at $(1,1)$ is:

$$
H_{(1,1)} f=\left(\begin{array}{cc}
1 / 2 & -1 \\
-1 & 5 / 2
\end{array}\right)
$$

We also obtained

$$
\partial_{1} f(1,1)=-1 / 2 \quad \partial_{2} f(1,1)=3 / 2
$$

and $f(1,1)=1 / 2$ so that:

$$
f\left(1+h_{x}, 1+h_{y}\right)_{\left(h_{x}, h_{y}\right) \rightarrow(0,0)}^{=} \frac{1}{2}-\frac{1}{2} h_{x}+\frac{3}{2} h_{y}+\frac{1}{2}\left(\frac{1}{2} h_{x}^{2}-2 h_{x} h_{y}+\frac{5}{2} h_{y}^{2}\right)+o\left(x^{2}+y^{2}\right) .
$$

3. For $t \in \mathbb{R}^{*}$:

$$
\begin{aligned}
& \frac{\partial_{1} f(0, t)-\partial_{1} f(0,0)}{t}=0 \underset{t \rightarrow 0}{\longrightarrow} 0 \\
& \frac{\partial_{2} f(t, 0)-\partial_{2} f(0,0)}{t}=0 \underset{t \rightarrow 0}{\longrightarrow} 0
\end{aligned}
$$

hence $\partial_{1,2}^{2} f(0,0)=\partial_{2,1}^{2} f(0,0)=0$.
4. Let $x \in \mathbb{R}^{*}$. Then: $\partial_{1,2} f(x, x)=-1$.
5. Let $y \in \mathbb{R}^{*}$. Then: $\partial_{1,2} f(0, y)=0$.
6. We have, on the one hand:

$$
\partial_{1,2} f(x, x) \underset{x \rightarrow 0}{\longrightarrow}-1
$$

and $(x, x) \underset{x \rightarrow 0}{\longrightarrow}(0,0)$. Hence, if the limit of $\partial_{1,2}^{2} f$ existed at $(0,0)$, its value would be -1 .
On the other hand:

$$
\partial_{1,2} f(0, y) \underset{x \rightarrow 0}{\longrightarrow} 0
$$

hence, if the limit of $\partial_{1,2}^{2} f$ existed at $(0,0)$, its value would be 0 .
Since $0 \neq-1$, and by uniqueness of the limit of a function at a point, we conclude that $\partial_{1,2}^{2} f$ is not continuous at $(0,0)$, hence f is not of class C^{2}.

Exercise 4.

1. Let $n \in \mathbb{N}^{*}$. Then,

$$
0 \leq \frac{1}{3^{n} n^{1 / 3}} \leq \frac{1}{3^{n}}
$$

Now the sequence $\left(1 / 3^{n}\right)_{n}$ is a geometric sequence of ratio $1 / 3 \in(-1,1)$, hence the series $\sum_{n} 1 / 3^{n}$ converges. We conclude, by the comparison test, that (S) converges.
Since

$$
\frac{1}{3^{n} n^{1 / 3}} \underset{n \rightarrow+\infty}{\longrightarrow} 0
$$

and $\mathrm{e}^{1 / n} \underset{n \rightarrow+\infty}{\longrightarrow} 1$ we have:

$$
\ln \left(1+\frac{1}{3^{n} n^{1 / 3}}\right) \mathrm{e}^{1 / n} \underset{n \rightarrow+\infty}{\sim} \frac{1}{3^{n} n^{1 / 3}}>0
$$

hence, by the equivalent test, $\left(S^{\prime}\right)$ and (S) have the same nature, hence $\left(S^{\prime}\right)$ converges.
2.

$$
\mathrm{e}^{1 / n^{2}}-\frac{1}{n^{2}} \underset{n \rightarrow+\infty}{\longrightarrow} 1 \neq 0
$$

hence the series (T) diverges.
3. For $n \in \mathbb{N}^{*}$ define

$$
u_{n}=\left(1+\frac{\alpha}{n}\right)^{-n^{2}}
$$

Clearly, for $n \in \mathbb{N}^{*}, u_{n} \geq 0$, and:

$$
u_{n}^{1 / n}=\left(1+\frac{\alpha}{n}\right)^{-n}=\frac{1}{\left(1+\frac{\alpha}{n}\right)^{n}} \underset{n \rightarrow+\infty}{\longrightarrow} \mathrm{e}^{-\alpha}<1 \quad \text { since } \alpha>0
$$

By the root test, we conclude that (R) converges.

[^0]: ${ }^{1}$ or, equivalently $2 x+3 z=-1$ or, equivalently, $z=-\frac{1}{3}(1+2 x)$.

