Exercise 1.

1.

$$
\forall x \in \mathbb{R}, x \mathrm{e}^{-x}=x \sum_{n=0}^{+\infty} \frac{(-x)^{n}}{n!}=x \sum_{n=0}^{+\infty} \frac{(-1)^{n}}{n!} x^{n}=\sum_{n=0}^{+\infty} \frac{(-1)^{n}}{n!} x^{n+1}=\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{(n-1)!} x^{n} .
$$

2. For $x \in(-R, R)$,

$$
\begin{gathered}
f^{\prime}(x)=\sum_{n=1}^{+\infty} a_{n} n x^{n-1}, \\
x f^{\prime}(x)=\sum_{n=0}^{+\infty} a_{n} n x^{n}, \\
f^{\prime \prime}(x)=\sum_{n=2}^{+\infty} a_{n} n(n-1) x^{n-2} \\
x f^{\prime \prime}(x)=\sum_{n=2}^{+\infty} a_{n} n(n-1) x^{n-1}=\sum_{n=1}^{+\infty} a_{n+1}(n+1) n x^{n},
\end{gathered}
$$

hence

$$
x f^{\prime \prime}(x)+x f^{\prime}(x)+f(x)=a_{0}+\sum_{n=1}^{+\infty}\left(a_{n+1}(n+1) n+n a_{n}+a_{n}\right) x^{n}=a_{0}+\sum_{n=1}^{+\infty}(n+1)\left(a_{n+1} n+a_{n}\right) x^{n}
$$

3. By the identity theorem, f is a solution if and only if:

$$
a_{0}=0, \text { and, } \forall n \in \mathbb{N}^{*}, a_{n+1}=-\frac{a_{n}}{n}
$$

It is easy to find a closed form form $\left(a_{n}\right)_{n \in \mathbb{N}}$:

$$
\left\{\begin{array}{l}
a_{0}=0 \\
\forall n \in \mathbb{N}^{*}, a_{n}=\frac{(-1)^{n-1}}{(n-1)!} a_{1}
\end{array}\right.
$$

and we recognize $a_{1} g$. Hence the general solution of this differential equation that possesses a power series expansion is $K g$ for $K \in \mathbb{R}$, and its radius of convergence is $+\infty$

Exercise 2.

1. Set $v_{0}=e_{0}$. Notice that $\left\|e_{0}\right\|_{2}=1$. and $v_{1}=e_{1}+\lambda e_{0}$ with

$$
\lambda=-\frac{\left\langle e_{1} \mid e_{0}\right\rangle}{\left\langle e_{0} \mid e_{0}\right\rangle}=-\frac{1}{2}
$$

hence $v_{1}=e_{1}-\frac{1}{2} e_{0}$. Now

$$
\left\|v_{1}\right\|^{2}=\left\langle v_{1} \mid v_{1}\right\rangle=\int_{0}^{1}\left(t-\frac{1}{2}\right)^{2} \mathrm{~d} t=\frac{1}{12} .
$$

We hence set:

$$
w_{0}=e_{0}, w_{1}=\sqrt{12}\left(e_{1}-\frac{1}{2} e_{0}\right)=\sqrt{3}\left(2 e_{1}-e_{0}\right)
$$

2. Since $\left(w_{0}, w_{1}\right)$ is an orthonormal basis of F :

$$
p_{F}\left(e_{2}\right)=\left\langle e_{2} \mid w_{0}\right\rangle w_{0}+\left\langle e_{2} \mid w_{1}\right\rangle w_{1} .
$$

Now,

$$
\alpha=\left\langle e_{2} \mid w_{0}\right\rangle=\frac{1}{3}
$$

and

$$
\beta=\left\langle e_{2} \mid w_{1}\right\rangle=\sqrt{3}\left(2\left\langle e_{2} \mid e_{1}\right\rangle-\left\langle e_{2} \mid e_{0}\right\rangle\right)=\sqrt{3}\left(\frac{1}{2}-\frac{1}{3}\right)=\frac{\sqrt{3}}{6},
$$

hence

$$
p_{F}\left(e_{2}\right)=\frac{1}{3} w_{0}+\frac{\sqrt{3}}{6} w_{1} .
$$

3. We notice that

$$
m=\inf _{u \in F}\left\|e_{2}-u\right\|^{2}
$$

and by the optimization property of the orthogonal projection,

$$
m=\left\|e_{2}-p_{F}\left(e_{2}\right)\right\|^{2} .
$$

Moreover, we know that $p_{F}\left(e_{2}\right) \perp\left(e_{2}-p_{F}\left(e_{2}\right)\right)$, hence, by the Pythagorean Theorem,

$$
\left\|e_{2}\right\|^{2}=\left\|p_{F}\left(e_{2}\right)+\left(e_{2}-p_{F}\left(e_{2}\right)\right)\right\|^{2}=\left\|p_{F}\left(e_{2}\right)\right\|^{2}+\left\|e_{2}-p_{F}\left(e_{2}\right)\right\|^{2}
$$

so that

$$
m=\left\|e_{2}\right\|^{2}-\left\|p_{F}\left(e_{2}\right)\right\|^{2}=\frac{1}{5}-\left(\alpha^{2}+\beta^{2}\right)
$$

where we used $\left\|p_{F}\left(e_{2}\right)\right\|^{2}=\alpha^{2}+\beta^{2}$ since $\left(w_{0}, w_{1}\right)$ is an orthonormal basis of F. Hence

$$
m=\frac{1}{5}-\left(\frac{1}{9}+\frac{1}{12}\right)=\frac{1}{180} .
$$

